School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
2 results
Search Results
Item Stability and electronic properties of two dimensional pentagonal layers of palladium chalcogenides(American Institute of Physics, 2019) Kumar, Ashok; Jakhar, M; Srivastava, S; Tankeshwar, K.We report structural and electronic properties of pristine and hybrid monolayers/bilayers of Pd chlcogenides within state-of-the-art density functional theory (DFT) calculations. The calculated cohesive energy suggests hybrid systems to be more stable than pristine monolayer/bilayer system. The considered structures show indirect band gap which get reduced on going from monolayer to bilayers. Spin-orbit coupling (SOC) further reduce the bandgap by shifting the band edges towards Fermi level. The reduction in band gap of hybrid bilayers is more pronounced which is attributed to the electronegativity difference between chalcogen S/Se atoms and greater charge redistribution between the layers. We believe that our theoretical study will add more 2D materials in the fascinating class of new 2D family and may guide the experimentalists to realize them for various future nano-electronic applications. © 2019 Author(s).Item Adsorption of nucleobases on different allotropes of phosphorene(American Institute of Physics, 2019) Jakhar, M; Kumar, Ashok; Srivastava, S; Parida, P; Tankeshwar, K.There has been tremendous interest in low-dimensional quantum systems during past two decades, fueled by a constant stream of striking discoveries and also by the potential for, and realization of, new state-of-the-art electronic device architectures. In this paper, our work includes the structural, electronic and optical properties of nucleobase (Adenine(A), Cytosine(C), Guanine(G), Thymine(T)) adsorbed on different allotropes of phosphorene (α, β, γ). From the optical absorption spectra of different nucleobases when adsorbed on the surface of phosphorene, we could optically probe different Nucleobases. As phosphorene shows different spectra for different nucleobases, it behaves as a bio-sensor to detect various nucleobases. © 2019 Author(s).