School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
3 results
Search Results
Item Design and synethesis of APE1 inhibitors as putative anticancer agents(Central University of Punjab, 2014) Kaur, Gagandeep; Kumar, RajSuccess in chemotherapy has not been attained completely yet and has remained a worried issue from years. Various reasons drive this failure, but the much talked about is failure due to emergence of resistance to chemotherapeutic drugs due to various factors. One of the major reasons here we have targeted is the resistance developed against DNA damaging chemotherapy due to over activation of APE1 enzyme evolved in BER pathway, which is the major repair pathway responsible for 95% of the DNA repair. Design and synthesis of APE1 inhibitors using rational approach fulfilling the pharmacophoric requirements has been carried out in this research work. Molecular modelling studies were performed to confirm that designed compounds fit well into the repair active cavity. 14 compounds have been designed and synthesized having pyrazolo-quinazolines core structure. The anticancer potential of the 8 representative compounds was evaluated against rat C-6 glial cell line at different concentrations. All synthesized compounds showed good anticancer activity against rat C-6 glial cell lines. The inhibitory potential of the compounds obtained from the MTT assay results helped us to formulate the SAR studies. Further ROS measurement was also carried out using DCFDA assay. Compounds showing good MTT results were also found to be potential antioxidants which conclude their mechanism of anticancer activity through APE1 inhibition. The active compounds may be taken further for lead optimisation and mechanistic interventions for their in vitro binding studies on APE1 in future.Item Synthesis and xanthine oxidase inhibitory activity of 5,6 dihydropyrazolo/pyrazolo[1,5-c]quinazoline derivatives(Elsevier, 2014) Kumar, Deependra; Kaur, Gagandeep; Negi, Arvind; Kumar, Sanjeev; Singh, Sandeep; Kumar, RajSome 5,6-dihydropyrazolo/pyrazolo[1,5-c]quinazoline derivatives were rationally designed, synthesized and evaluated for in vitro xanthine oxidase inhibitory activity for the first time. Some notions about structure activity relationships are presented. The compounds 6g, 6h and 6e were found to be significantly active against XO. The compound 6g emerged as the most potent XO inhibitor as compared to allopurinol and free radical scavenger. The molecular docking of 6g into the XO active site highlighted its mode of binding and important interactions such as hydrogen bonding, π–π stacking with amino acid residues like Ser876, Thr1010, Phen914, Phe1009 and Phe649 and its close proximity to dioxothiomolybdenum (MOS).Item DNA Repair and Redox Activities and Inhibitors of Apurinic/ Apyrimidinic Endonuclease 1/Redox Effector Factor 1 (APE1/Ref-1): A Comparative Analysis and Their Scope and Limitations toward Anticancer Drug Development(ACS Publications, 2014) Kaur, Gagandeep; Cholia, Ravi P.; Mantha, Anil K.; Kumar, RajThe apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional enzyme involved in DNA repair and activation of transcription factors through its redox function. The evolutionarily conserved C- and N-termini are involved in these functions independently. It is also reported that the activity of APE1/Ref-1 abruptly increases several-fold in various human cancers. The control over the outcomes of these two functions is emerging as a new strategy to combine enhanced DNA damage and chemotherapy in order to tackle the major hurdle of increased cancer cell growth and proliferation. Studies have targeted these two domains individually for the design and development of inhibitors for APE1/Ref-1. Here, we have made, for the first time, an attempt at a comparative analysis of APE1/Ref-1 inhibitors that target both DNA repair and redox activities simultaneously. We further discuss their scope and limitations with respect to the development of potential anticancer agents.