School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 9 of 9
  • Item
    Connecting the Link between Oxidative Stress, Dietary Antioxidants and Hypertension
    (CRC Press, 2023-06-12T00:00:00) Kaur, Sukhchain; Midha, Tushar; Dutta, Oyndril; Saini, Om Prakash; Muduli, Rasmi Ranjan; Mantha, Anil K.; Dhiman, Monisha
    Cardiovascular disorders such as hypertension, coronary heart disease (CHD), cerebrovascular disease, etc. accounts for millions of deaths per year and among these, hypertension (i.e. increased blood pressure) acts as a silent killer and is responsible for 7.5 billion deaths worldwide. Previously, abnormal functioning of the Renin Angiotensin Aldosterone System (RAAS) was considered as a risk factor for hypertension but in recent times, oxidative stress is a key factor in exaggerating the disease progression. In hypertension, oxidative stress damages the biomolecules, decreases the NO availability and endothelial functioning. The use of external antioxidants as therapeutic agents is an excellent approach in the treatment of hypertension. These antioxidants can reverse the deleterious effects of oxidative stress and recover normal cellular homeostasis. The book chapter is focused on the various natural antioxidants and their role as anti-hypertensive agents. � 2024 selection and editorial matter, Victor R. Preedy, Vinood B. Patel, and Rajkumar Rajendram.
  • Item
    Bioremediation: A favorable perspective to eliminate heavy metals from polluted soil
    (Elsevier, 2022-09-30T00:00:00) Kaur, Sukhchain; Midha, Tushar; Verma, Harkomal; Muduli, Rasmi Ranjan; Dutta, Oyindril; Saini, Omprakash; Prakash, Richa; Sharma, Sandeep; Mantha, Anil K.; Dhiman, Monisha
    The heavy metal contamination in the environment causes serious risk and long-term lethal effects to all living organisms due to their ability to show toxicity at low concentrations. The bio-magnification of heavy metals in the food chain is a matter of concern for public health. The persistent exposure to heavy metals such as mercury (Hg), lead (Pb), cadmium (Cd), arsenic (As), and uranium (U) cause several pathologic conditions in humans by interfering with normal cellular processes. Due to the non-biodegradable nature of these pollutants, they get accumulated for a long time in the soil. The removal of these pollutants by conventional methods is not satisfactory due to the high cost and generation of huge quantities of waste products. Hence, the use of micro-organisms is the most successful approach to remediate heavy metals from the environment due to their efficacy and financial viability. Numerous microorganisms have been employed to diminish the toxic effects of heavy metals. The combination of microorganisms and plants as a bioremediation strategy is another efficient method for heavy metal bioremediation. The chapter will summarize the heavy metal exploitation with a focus on Cd, As, Pb, and Chromium (Cr). It will also describe the various bioremediation techniques which are being used in the removal of these heavy metals from soil. � 2023 Elsevier Inc. All rights reserved.
  • Item
    Herbal Remedies for Improving Cancer Treatment Through Modulation of Redox Balance
    (Springer Singapore, 2022-09-28T00:00:00) Kaur, Sukhchain; Verma, Harkomal; Kaur, Sharanjot; Singh, Subham; Mantha, Anil K.; Dhiman, Monisha
    The redox modulation induced by oxidative stress is one of the major cause of the metabolic and inflammatory disorders including cancer. The reactive oxygen species (ROS) produced by various sources in the cell shift the redox homeostasis of cells towards more oxidizing or acidic environment. This shift results in the alterations of normal physiologic functioning of biomolecules as well as causes damage to these biomolecules (proteins, lipids, and DNA/RNA). The excessive ROS and redox modulation are the key factors that support growth, progression, and survival of cancer cells. ROS-induced redox modulation further activates pro-tumorigenic cellular pathways for e.g., PI3K/AKT, HIF-1, and MAPK signaling pathways as well as hinders epigenetic signaling. Increasing evidences demonstrate that long-term side effects of anti-cancer chemotherapy are major concern of medical sciences although modern treatments are quite effective. The combination of various herbal formulations with anti-cancer therapy shows improvement in treatment effectiveness in cancer patients. Bioactive compounds present in herbal formulations possess antioxidant and anti-cancer properties that help in the regulation of redox status of cancer cells. The synergetic effects of herbal remedies along with conventional treatment are proven as novel therapeutics in cancer progression management. Clinical studies have shown that broad range of herbs and bioactive compounds from various plants having antioxidant, anti-inflammatory properties can suppress the carcinogenesis. In this chapter we will discuss the role of various plants such as Glycyrrhiza glabra, Picrorhiza kurroa, Tinospora cordifolia, Curcuma longa, Ocimum sanctum, Viola odorata, and bioactive compound ferulic acid found in various cereals. The chapter will also focus on various mechanisms involved in the modulation of chemo-toxicity and improvement of efficacy of conventional anti-cancer therapies by these plants. � Springer Nature Singapore Pte Ltd. 2022.
  • Item
    Understanding the multifaceted role of miRNAs in Alzheimer�s disease pathology
    (Springer, 2023-07-28T00:00:00) Kaur, Sharanjot; Verma, Harkomal; Kaur, Sukhchain; Gangwar, Prabhakar; Yadav, Anuradha; Yadav, Bharti; Rao, Rashmi; Dhiman, Monisha; Mantha, Anil Kumar
    Small non-coding RNAs (miRNAs) regulate gene expression by binding to mRNA and mediating its degradation or inhibiting translation. Since miRNAs can regulate the expression of several genes, they have multiple roles to play in biological processes and human diseases. The majority of miRNAs are known to be expressed in the brain and are involved in synaptic functions, thus marking their presence and role in major neurodegenerative disorders, including Alzheimer�s disease (AD). In AD, amyloid beta (A?) plaques and neurofibrillary tangles (NFTs) are known to be the major hallmarks. The clearance of A? and tau is known to be associated with miRNA dysregulation. In addition, the ?-site APP cleaving enzyme (BACE 1), which cleaves APP to form A?, is also found to be regulated by miRNAs, thus directly affecting A? accumulation. Growing evidences suggest that neuroinflammation can be an initial event in AD pathology, and miRNAs have been linked with the regulation of neuroinflammation. Inflammatory disorders have also been associated with AD pathology, and exosomes associated with miRNAs are known to regulate brain inflammation, suggesting for the role of systemic miRNAs in AD pathology. Several miRNAs have been related in AD, years before the clinical symptoms appear, most of which are associated with regulating the cell cycle, immune system, stress responses, cellular senescence, nerve growth factor (NGF)�signaling, and synaptic regulation. Phytochemicals, especially polyphenols, alter the expression of various miRNAs by binding to miRNAs or binding to the transcriptional activators of miRNAs, thus control/alter various metabolic pathways. Awing to the sundry biological processes being regulated by miRNAs in the brain and regulation of expression of miRNAs via phytochemicals, miRNAs and the regulatory bioactive phytochemicals can serve as therapeutic agents in the treatment and management of AD. � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
  • Item
    Correlative study on heavy metal-induced oxidative stress and hypertension among the rural population of Malwa Region of Punjab, India
    (Springer Science and Business Media Deutschland GmbH, 2022-07-26T00:00:00) Kaur, Sukhchain; Garg, Neha; Rubal, Rubal; Dhiman, Monisha
    Heavy metal-induced toxicity contributes to the progression of various metabolic disorders and possible mechanisms involved in disease progression are not well established. In this study, the correlation of heavy metal exposure and hypertension have been demonstrated. The results showed that in hypertensive subjects, the lipid profiles (triglycerides, LDL-C, HDL-C, and total cholesterol) and cardiac markers (CK-MB and LDH) were altered abruptly. As a consequence of heavy- induced oxidative stress, the oxidants (TBARS and protein carbonyls) and antioxidants (SOD, GSH, and TAC) were significantly increased and decreased, respectively in hypertension�subjects. The concentrations of heavy metals (Pb, Cd, and As) exceeded the permissible limits in hypertensive subjects. The Nrf-2 genotyping indicated that heavy metals may induce mutations at molecular level. The results of correlation analysis revealed that�the heavy metals interact with cellular components and interfere with metabolic processes which then�results in disturbed lipid profile, enhanced oxidative stress, and reduced antioxidant status. The current study systematically estimated the association of hair and nail heavy metal concentrations with hypertension among the population residing in the Malwa region of Punjab. The proposed study highlighted that heavy metals act as a silent risk factor in the hypertension progression in the population of Malwa region. Future studies are required to confirm current findings and further scrutinize the effect of heavy metals exposure in early adulthood, early, and late mid-life to develop metabolic complications such as hypertension. � 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
  • Item
    Understanding the multifaceted role of miRNAs in Alzheimer�s disease pathology
    (Springer, 2023-07-28T00:00:00) Kaur, Sharanjot; Verma, Harkomal; Kaur, Sukhchain; Gangwar, Prabhakar; Yadav, Anuradha; Yadav, Bharti; Rao, Rashmi; Dhiman, Monisha; Mantha, Anil Kumar
    Small non-coding RNAs (miRNAs) regulate gene expression by binding to mRNA and mediating its degradation or inhibiting translation. Since miRNAs can regulate the expression of several genes, they have multiple roles to play in biological processes and human diseases. The majority of miRNAs are known to be expressed in the brain and are involved in synaptic functions, thus marking their presence and role in major neurodegenerative disorders, including Alzheimer�s disease (AD). In AD, amyloid beta (A?) plaques and neurofibrillary tangles (NFTs) are known to be the major hallmarks. The clearance of A? and tau is known to be associated with miRNA dysregulation. In addition, the ?-site APP cleaving enzyme (BACE 1), which cleaves APP to form A?, is also found to be regulated by miRNAs, thus directly affecting A? accumulation. Growing evidences suggest that neuroinflammation can be an initial event in AD pathology, and miRNAs have been linked with the regulation of neuroinflammation. Inflammatory disorders have also been associated with AD pathology, and exosomes associated with miRNAs are known to regulate brain inflammation, suggesting for the role of systemic miRNAs in AD pathology. Several miRNAs have been related in AD, years before the clinical symptoms appear, most of which are associated with regulating the cell cycle, immune system, stress responses, cellular senescence, nerve growth factor (NGF)�signaling, and synaptic regulation. Phytochemicals, especially polyphenols, alter the expression of various miRNAs by binding to miRNAs or binding to the transcriptional activators of miRNAs, thus control/alter various metabolic pathways. Awing to the sundry biological processes being regulated by miRNAs in the brain and regulation of expression of miRNAs via phytochemicals, miRNAs and the regulatory bioactive phytochemicals can serve as therapeutic agents in the treatment and management of AD. � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
  • Item
    Correlative study on heavy metal-induced oxidative stress and hypertension among the rural population of Malwa Region of Punjab, India
    (Springer Science and Business Media Deutschland GmbH, 2022-07-26T00:00:00) Kaur, Sukhchain; Garg, Neha; Rubal, Rubal; Dhiman, Monisha
    Heavy metal-induced toxicity contributes to the progression of various metabolic disorders and possible mechanisms involved in disease progression are not well established. In this study, the correlation of heavy metal exposure and hypertension have been demonstrated. The results showed that in hypertensive subjects, the lipid profiles (triglycerides, LDL-C, HDL-C, and total cholesterol) and cardiac markers (CK-MB and LDH) were altered abruptly. As a consequence of heavy- induced oxidative stress, the oxidants (TBARS and protein carbonyls) and antioxidants (SOD, GSH, and TAC) were significantly increased and decreased, respectively in hypertension�subjects. The concentrations of heavy metals (Pb, Cd, and As) exceeded the permissible limits in hypertensive subjects. The Nrf-2 genotyping indicated that heavy metals may induce mutations at molecular level. The results of correlation analysis revealed that�the heavy metals interact with cellular components and interfere with metabolic processes which then�results in disturbed lipid profile, enhanced oxidative stress, and reduced antioxidant status. The current study systematically estimated the association of hair and nail heavy metal concentrations with hypertension among the population residing in the Malwa region of Punjab. The proposed study highlighted that heavy metals act as a silent risk factor in the hypertension progression in the population of Malwa region. Future studies are required to confirm current findings and further scrutinize the effect of heavy metals exposure in early adulthood, early, and late mid-life to develop metabolic complications such as hypertension. � 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
  • Thumbnail Image
    Item
    Indian Herbs and their Therapeutic Potential against Alzheimer’s Disease and other Neurological Disorders
    (Wiley, 2017) Kaur, Navrattan; Sarkar, Bibekananda; Gill, Iqbal; Kaur, Sukhchain; Mittal, Sunil; Dhiman, Monisha; Padala, Prasad R.; Perez-Polo, Regino; Mantha, Anil K.
    Many present-day diseases are caused by disruption of the delicate balance between the reactive oxygen/nitrogen species (ROS/RNS) produced by oxidants and their scavenging by the antioxidants in the body. Chief among them is Alzheimer's disease (AD), an age-related neurodegenerative disease caused by the accumulation in the brain of amyloid beta (Aβ) plaques and of neurofibrillary tangles made up of the protein tau. Various theories for the pathogenesis of AD have been given, but no precise mechanism of its pathogenesis has been elucidated to date. A number of scientists are currently focusing on developing therapeutics for the prevention and treatment of AD. Natural plant-based products, which have been known traditionally in the treatment of brain disorders, could be a great help. Traditional herbal formulations developed for brain disorders are known as “Medhya drugs” in the Indian system of medicine called “Ayurveda” – a disease-preventive and health-promotive approach dating back to 5000 BC. This review focuses on the traditional use of some common Indian herbs in relation to AD, alongside recent advances in our understanding of their modes of action.
  • Thumbnail Image
    Item
    Phytochemical Ginkgolide B Attenuates Amyloid-␤ 1 - 42 Induced Oxidative Damage and Altered Cellular Responses in Human Neuroblastoma SH-SY5Y Cells
    (IOS Press, 2017) Gill, Iqbal; Kaur, Sukhchain; Kaur, Navrattan; Dhiman, Monisha; Mantha, Anil K.
    Oxidative stress is an upsurge in reactive oxygen/nitrogen species (ROS/RNS), which aggravates damage to cellular components viz. lipids, proteins, and nucleic acids resulting in impaired cellular functions and neurological pathologies including Alzheimer's disease (AD). In the present study, we have examined amyloid-β (Aβ)-induced oxidative stress responses, a major cause for AD, in the undifferentiated and differentiated human neuroblastoma SH-SY5Y cells. Aβ1-42-induced oxidative damage was evaluated on lipids by lipid peroxidation; proteins by protein carbonyls; antioxidant status by SOD and GSH enzyme activities; and DNA and RNA damage levels by evaluating the number of AP sites and 8-OHG base damages produced. In addition, the neuro-protective role of the phytochemical ginkgolide B (GB) in countering Aβ1-42-induced oxidative stress was assessed. We report that the differentiated cells are highly vulnerable to Aβ1-42-induced oxidative stress events as exerted by the deposition of Aβ in AD. Results of the current study suggest that the pre-treatment of GB, followed by Aβ1-42 treatment for 24 h, displayed neuro-protective potential, which countered Aβ1-42-induced oxidative stress responses in both undifferentiated and differentiated SH-SY5Y neuronal cells by: 1) hampering production of ROS and RNS; 2) reducing lipid peroxidation; 3) decreasing protein carbonyl content; 4) restoring antioxidant activities of SOD and GSH enzymes; and 5) maintaining genome integrity by reducing the oxidative DNA and RNA base damages. In conclusion, Aβ1-42 induces oxidative damage to the cellular biomolecules, which are associated with AD pathology, and are protected by the pre-treatment of GB against Aβ-toxicity. Taken together, this study advocates for phytochemical-based therapeutic interventions against AD.