School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 7 of 7
  • Item
    Application of curcumin nanoformulations to target folic acid receptor in cancer: Recent trends and advances
    (Academic Press Inc., 2023-06-20T00:00:00) Hussain, Arif; Kumar, Ajay; Uttam, Vivek; Sharma, Uttam; Sak, Katrin; Saini, Reena V.; Saini, Adesh K.; Haque, Shafiul; Tuli, Hardeep Singh; Jain, Aklank; Sethi, Gautam
    Curcumin, derived from turmeric, has a strong anticancer potential known for millennia. The development of this phytochemical as a medicine has been hampered by several significant deficiencies, including its poor water solubility and low bioavailability. This review article discusses possibilities to overcome these bottlenecks by focusing on this natural polyphenol's nanoformulation. Moreover, preparation of curcumin conjugates containing folates as ligands for folic acid receptors can add a new important dimension in this field, allowing specific targeting of cancer cells, considering the significantly higher expression of these receptors in malignant tissues compared to normal cells. It is highly expected that simultaneous improvement of different aspects of curcumin in fighting against such a complex and multifaceted disease like cancer. Therefore, we can better comprehend cancer biology by developing a mechanistic understanding of curcumin, which will also inspire the scientific community to develop new pharmacological models, and exploration of emerging directions to revitalize application of natural products in cancer therapy. � 2023 Elsevier Inc.
  • Item
    Ampelopsin targets in cellular processes of cancer: Recent trends and advances
    (Elsevier Inc., 2022-07-27T00:00:00) Tuli, Hardeep Singh; Sak, Katrin; Garg, Vivek Kumar; Kumar, Ajay; Adhikary, Shubham; Kaur, Ginpreet; Parashar, Nidarshana Chaturvedi; Parashar, Gaurav; Mukherjee, Tapan Kumar; Sharma, Uttam; Jain, Aklank; Mohapatra, Ranjan K.; Dhama, Kuldeep; Kumar, Manoj; Singh, Tejveer
    Cancer is being considered as a serious threat to human health globally due to limited availability and efficacy of therapeutics. In addition, existing chemotherapeutic drugs possess a diverse range of toxic side effects. Therefore, more research is welcomed to investigate the chemo-preventive action of plant-based metabolites. Ampelopsin (dihydromyricetin) is one among the biologically active plant-based chemicals with promising anti-cancer actions. It modulates the expression of various cellular molecules that are involved in cancer progressions. For instance, ampelopsin enhances the expression of apoptosis inducing proteins. It regulates the expression of angiogenic and metastatic proteins to inhibit tumor growth. Expression of inflammatory markers has also been found to be suppressed by ampelopsin in cancer cells. The present review article describes various anti-tumor cellular targets of ampelopsin at a single podium which will help the researchers to understand mechanistic insight of this phytochemical. � 2022 The Authors
  • Item
    Effects of Dy3+-doping on the band-gap widening and formation of mixed cubic and monoclinic phases of Sm2O3 nanoparticles
    (Springer Science and Business Media Deutschland GmbH, 2023-10-30T00:00:00) Sain, Rachana; Roy, Ayan; Kumar, Ajay; Anu; Deeksha; Kour, Pawanpreet; Singh, Ravi Pratap; Yadav, Kamlesh
    We synthesized Sm2?xDyxO3 (where X = 0.00, 0.03, 0.06, 0.09, and 0.12) nanoparticles using a co-precipitation method and investigated their structural and optical properties. X-ray diffraction (XRD) results reveal that Dy3+-doping in Sm2O3 nanoparticles leads to the formation of a monoclinic polymorphic phase along with the cubic phase of Sm2O3 and its fraction increases with increasing Dy3+-doping concentration. The substitution of Dy3+ at the Sm3+ site converts the cubic Sm2O3 unit cells into distorted monoclinic Sm2?XDyXO3 unit cells. The average crystallite and nanoparticle sizes decrease with increasing Dy3+-doping concentration. Dy3+-ions act as particle size inhibitors, which is attributed to an increase in the segregation of Dy3+-dopant ions at the surface of the nanoparticles with increasing Dy3+-doping content. The peak appearing at 851�cm?1 in the Fourier transform infrared spectroscopy (FTIR) spectra confirms the formation of Sm2O3. Widening of the band gap (Eg) above the band gap of pure cubic Sm2O3 with Dy3+-doping concentration has been observed for X > 0.06, which is due to the Moss-Burstein and quantum size effects. � 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.
  • Item
    Effects of Interfacial Interactions and Nanoparticle Agglomeration on the Structural, Thermal, Optical, and Dielectric Properties of Polyethylene/Cr2O3 and Polyethylene/Cr2O3/CNTs Nanocomposites
    (Springer, 2022-11-22T00:00:00) Gupta, Jaya; Kumar, Ajay; Roy, Ayan; Anu; Deeksha; Kour, Pawanpreet; Singh, Ravi Pratap; Yogesh, Gaurav Kumar; Yadav, Kamlesh
    In this report, we have synthesized the binary and ternary phase nanocomposites [(polyethylene (PE)1?X/(Cr2O3)x) and (PE)1?X/(Cr2O3)X/CNTs (where X = 0,�2%, 4%, 6%, 8%, and 10%)] using the melt mixing method and studied the structural, optical, thermal and dielectric properties with an increase in Cr2O3 nanofiller concentration. Our results show an increase in interfacial interactions between Cr2O3 nanofiller and PE matrix with an increase in nanofiller concentration up to X = 6%. After that, the interactions decreased with a further increase in X because of the increase in the size of the Cr2O3 nanoparticle aggregates. Incorporating 2% carbon nanotubes (CNTs) into (PE)1?X/(Cr2O3)X nanocomposites, further decreases the interactions between the Cr2O3 nanofiller and the PE matrix. � 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
  • Item
    Soil Microbiome: Diversity, Benefits and Interactions with Plants
    (Multidisciplinary Digital Publishing Institute (MDPI), 2023-10-09T00:00:00) Chauhan, Poonam; Sharma, Neha; Tapwal, Ashwani; Kumar, Ajay; Verma, Gaurav Swaroop; Meena, Mukesh; Seth, Chandra Shekhar; Swapnil, Prashant
    Plant roots aid the growth and functions of several kinds of microorganisms such as plant growth-promoting rhizobacteria, mycorrhizal fungi, endophytic bacteria, actinomycetes, nematodes, protozoans which may impart significant impacts on plant health and growth. Plant soil�microbe interaction is an intricate, continuous, and dynamic process that occurs in a distinct zone known as the rhizosphere. Plants interact with these soil microbes in a variety of ways, including competitive, exploitative, neutral, commensal, and symbiotic relationships. Both plant and soil types were found to have an impact on the community diversity and structure of the rhizosphere, or vice versa. The diversity of microorganisms in soil is thought to be essential for the management of soil health and quality because it has different plant growth-promoting or biocontrol effects that could be very advantageous for the host plant and alter plant physiology and nutrition. The composition of microbial community is influenced by soil and plant type. Besides these beneficial microbes, the soil also harbors microorganisms that are detrimental to plants, competing for nutrients and space, and causing diseases. Numerous microorganisms have antagonistic activity and the ability to defend plants from soil-borne diseases. The study of the soil microbiome is essential for formulating strategies for transforming the rhizosphere to the benefit of the plants. This review pays special emphasis on the types of microbial populations in the soil and how they influence plant growth, nutrient acquisition, inter-relationships between soil microbes and plants, stress resistance, carbon sequestration, and phytoremediation. � 2023 by the authors.
  • Item
    Soil Microbiome: Diversity, Benefits and Interactions with Plants
    (Multidisciplinary Digital Publishing Institute (MDPI), 2023-10-09T00:00:00) Chauhan, Poonam; Sharma, Neha; Tapwal, Ashwani; Kumar, Ajay; Verma, Gaurav Swaroop; Meena, Mukesh; Seth, Chandra Shekhar; Swapnil, Prashant
    Plant roots aid the growth and functions of several kinds of microorganisms such as plant growth-promoting rhizobacteria, mycorrhizal fungi, endophytic bacteria, actinomycetes, nematodes, protozoans which may impart significant impacts on plant health and growth. Plant soil�microbe interaction is an intricate, continuous, and dynamic process that occurs in a distinct zone known as the rhizosphere. Plants interact with these soil microbes in a variety of ways, including competitive, exploitative, neutral, commensal, and symbiotic relationships. Both plant and soil types were found to have an impact on the community diversity and structure of the rhizosphere, or vice versa. The diversity of microorganisms in soil is thought to be essential for the management of soil health and quality because it has different plant growth-promoting or biocontrol effects that could be very advantageous for the host plant and alter plant physiology and nutrition. The composition of microbial community is influenced by soil and plant type. Besides these beneficial microbes, the soil also harbors microorganisms that are detrimental to plants, competing for nutrients and space, and causing diseases. Numerous microorganisms have antagonistic activity and the ability to defend plants from soil-borne diseases. The study of the soil microbiome is essential for formulating strategies for transforming the rhizosphere to the benefit of the plants. This review pays special emphasis on the types of microbial populations in the soil and how they influence plant growth, nutrient acquisition, inter-relationships between soil microbes and plants, stress resistance, carbon sequestration, and phytoremediation. � 2023 by the authors.
  • Item
    Characterization of phytochemicals and validation of antioxidant and anticancer activity in some Indian polyherbal ayurvedic products
    (Springer, 2021-03-13T00:00:00) Kushwaha, Prem Prakash; Kumar, Ramesh; Neog, Panchi Rani; Behara, Malay Ranjan; Singh, Pratibha; Kumar, Ajay; Prajapati, Kumari Sunita; Singh, Atul Kumar; Shuaib, Mohd; Sharma, Amit Kumar; Pandey, Abhay Kumar; Kumar, Shashank
    In the present comparative study, the authors studied the antioxidant and anticancer activity of commercially available polyherbal Indian Ayurvedic products namely Divya Sarvakalp Kwath (DSKK), Divya Sanjivani Vati (DSV), Kanchanar Guggulu (KG) and Shakti Drop (SD). Authors also quantified phenolic and flavonoid contents in the samples. Solid powdered samples (DSKK, DSV, and KG) were extracted in methanol and water (1:1) using cold extraction method. Spectrophotometry technique was used to quantify the phytochemicals present in test samples. DSKK showed comparatively higher content of total phenolics (247.65 � 0.05 ?gPGE/g) and flavonoid (34.66 � 0.19 �gQE/mg). Radical scavenging, metal ion chelation and reducing potential of test products were studied using nitric oxide scavenging, DPPH, metal ion chelation, reducing power ability, and phosphomolybdate in vitro antioxidant assays at different concentration. Dose-dependent antioxidant activity was observed in all the test samples at 100�500��g or �l/ml concentration. Anticancer efficacy of the test samples were studied in lung (A549), colon (Colo205), and breast cancer (MCF7) cell lines at different concentrations (10�100��g or �l/ml) using MTT assay. Confocal microscopy was used to reveal the apoptotic induction, mitochondrial membrane integrity disruption and reactive oxygen species production ability of test products in cancer cells. The present study revealed that DSKK possesses comparatively better antioxidant potential and SD has potent anticancer activity against breast cancer cells. � 2021, Society for Plant Research.