School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Twisted helical armchair graphene nanoribbons: mechanical and electronic properties
    (Springer Science and Business Media Deutschland GmbH, 2021-05-08T00:00:00) Thakur, Rajesh; Ahluwalia, P.K.; Kumar, Ashok; Sharma, Munish; Sharma, Raman
    Abstract: The Hydrogen and Fluorine planar armchairs graphene nanoribbons (H & F AGNRs), subjected to twist deformation within fixed periodic boundary conditions. H-AGNRs is highly elastic in nature, though passivation with Fluorine does induce the plasticity when twisted beyond threshold torsional strain. This plasticity attributes to the wider bond length distribution suggests distortion of benzo-rings. The bandgap response to the effective strain of narrow GNRs N= 6 , 7 , and 8 get arranged as (i) monotonously increasing for q= 0 , 2 and (ii) decreasing for q= 1 ; here, q= mod(N, 3) in effective strain space (?2?2). The effective strain space is found to be more appropriate for gauging the response of torsional strain. This trend has also been observed for Fluorine passivated AGNRs; however, because of higher sensitive response to torsional strain, the bandgap of N= 7 F-AGNRs drops from Eg? 0.95 eV to Eg? 0.05 eV at extreme torsional strain forming Dirac cone at � K allows dissipationless transport to charge carriers of high kinetic energy at low bias. Graphic abstract: [Figure not available: see fulltext.] � 2021, The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature.
  • Thumbnail Image
    Item
    Stability and electronic properties of hybrid SnO bilayers: SnO/graphene and SnO/BN
    (Institute of Physics Publishing, 2017) Guo, Qing; Wang, Gaoxue; Kumar, Ashok; Pandey, Ravindra
    Van der Waals structures based on two-dimensional materials have been considered as promising structures for novel nanoscale electronic devices. Two-dimensional SnO films which display intrinsic p-type semiconducting properties were fabricated recently. In this paper, we consider vertically stacked heterostructures consisting of a SnO monolayer with graphene or a BN monolayer to investigate their stability, electronic and transport properties using density functional theory. The calculated results find that the properties of the constituent monolayers are retained in these SnO-based heterostructures, and a p-type Schottky barrier is formed in the SnO/graphene heterostructure. Additionally, the Schottky barrier can be effectively controlled with an external electric field, which is useful characteristic for the van der Waals heterostructure-based electronic devices. In the SnO/BN heterostructure, the electronic properties of SnO are least affected by the insulating monolayer suggesting that the BN monolayer would be an ideal substrate for SnO-based nanoscale devices. ? 2017 IOP Publishing Ltd.
  • Thumbnail Image
    Item
    Electronic, Mechanical, and Dielectric Properties of Two-Dimensional Atomic Layers of Noble Metals
    (Springer New York LLC, 2017) Kapoor, Pooja; Kumar, Jagdish; Kumar, Arun; Kumar, Ashok; Ahluwalia, P. K.
    We present density functional theory-based electronic, mechanical, and dielectric properties of monolayers and bilayers of noble metals (Au, Ag, Cu, and Pt) taken with graphene-like hexagonal structure. The Au, Ag, and Pt bilayers stabilize in AA-stacked configuration, while the Cu bilayer favors the AB stacking pattern. The quantum ballistic conductance of the noble-metal mono- and bilayers is remarkably increased compared with their bulk counterparts. Among the studied systems, the tensile strength is found to be highest for the Pt monolayer and bilayer. The noble metals in mono- and bilayer form show distinctly different electron energy loss spectra and reflectance spectra due to the quantum confinement effect on going from bulk to the monolayer limit. Such tunability of the electronic and dielectric properties of noble metals by reducing the degrees of freedom of electrons offers promise for their use in nanoelectronics and optoelectronics applications. ? 2016, The Minerals, Metals & Materials Society.