School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
3 results
Search Results
Item Optoelectronic and photocatalytic properties of stable pentagonal B2S and B2Se monolayers(Elsevier B.V., 2022-06-01T00:00:00) Katoch, Neha; Kumar, Jagdish; Kumar, Ashok; Ahluwalia, P.K.; Pandey, RavindraBoron-based 2D monolayers have attracted tremendous interest due to their unique physical and chemical properties. In this paper, we report novel pentagonal monolayers, B2S and B2Se, which are predicted to be energetically, dynamically, and thermally stable based on density functional theory. At the HSE06 level of theory, they exhibit a moderate indirect bandgap of (e.g., 1.82 eV for Penta-B2S and 1.94 eV for Penta-B2Se). Strain-induced indirect-to-direct bandgap transition, high hole mobility (~103 Cm2V-1S-1) and strong optical absorption (? ~105 Cm-1) in the visible region are observed for these monolayers. Moreover, the electronic band structures and optical spectra are tunable by mechanical strains suggesting their visible light-harvesting capabilities for optoelectronic applications. In this way, the pentagonal family of 2D materials is now expanded to include boron-containing photocatalytic materials for water splitting applications. � 2022Item Electronic and optical properties of boron-based hybrid monolayers(IOP Publishing Ltd, 2021-06-24T00:00:00) Katoch, Neha; Kumar, Ashok; Kumar, Jagdish; Ahluwalia, P.K.; Pandey, RavindraAnisotropic 2D Dirac cone materials are important for the fabrication of nanodevices having direction-dependent characteristics since the anisotropic Dirac cones lead to different values of Fermi velocities yielding variable carrier concentrations. In this work, the feasibility of the B-based hybrid monolayers BX (X = As, Sb, and Bi), as anisotropic Dirac cone materials is investigated. Calculations based on density functional theory and molecular dynamics method find the stability of these monolayers exhibiting unique electronic properties. For example, the BAs monolayer possesses a robust self-doping feature, whereas the BSb monolayer carries the intrinsic charge carrier concentration of the order of 1012 cm?2 which is comparable to that of graphene. Moreover, the direction-dependent optical response is predicted in these B-based monolayers; a high IR response in the x-direction is accompanied with that in the visible region along the y-direction. The results are, therefore, expected to help in realizing the B-based devices for nanoscale applications. � 2021 IOP Publishing Ltd Printed in the UKItem Spin-polarized linear dispersions, lattice dynamics and transport properties of quaternary Heusler alloys (LiMgXSb)(Elsevier Ltd, 2023-01-16T00:00:00) Nag, Abhinav; Gupta, Yuhit; Kumar, JagdishIn this study, we are predicting a new class of materials obtained by substituting a magnetic transition metal ion in quaternary Heusler alloys with the formula LiMgXSb (X = Co, Cr, Fe, Mn). We found that all the studied alloys exhibit a ferromagnetic ground state except LiMgCoSb. The phonon dispersions of the studied alloys computed within spin-polarized density functional perturbation theory (DFPT) do not exhibit any imaginary frequencies indicating that the proposed alloys are dynamically stable. The band structure calculations show that the studied alloys are metallic and exhibit the states near Fermi level for both spins. The fixed spin moment (FSM) calculations have been employed to exclude the possibility of other ferromagnetic ground states. One of the most interesting aspects of the band structure of these compounds is the existence of multiple band crossings leading to multiple Weyl points in the Brillouin zone. We have also computed the spin-polarized transport properties of these alloys. Our results find that doping charge carriers in the unit cell can significantly enhance the power factor and ZT. Electron doping is more effective for improving the power factor. Our findings show that among all the alloys LiMgFeSb has the highest ZT value with electron doping. Our studied materials constitute a new family of three-dimensional materials exhibiting band degeneracies that lead to Weyl points. � 2023 Elsevier B.V.