School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
12 results
Search Results
Item Design, synthesis and evaluation of 4-phenyl-1,2,3-triazole substituted pyrimidine derivatives as antiproliferative and tubulin polymerization inhibitors(Elsevier B.V., 2022-06-26T00:00:00) Dwivedi, Ashish Ranjan; Kumar, Vijay; Yadav, Ravi Prakash; Kumar, Naveen; Jangid, Kailash; Anand, Piyush; Sharma, Deepak Kumar; Barnawal, Somesh; Kumar, VinodLigands binding to the colchicine domain of the tubulin protein act as tubulin polymerization inhibitors and arrest the cell cycle in G2/M phase. A series of 4-Phenyl-1,2,3-triazole substituted pyrimidine derivatives have been synthesized and evaluated for antiproliferative and antitubulin activities. In the series, AV-6 and AV-14 were found to be active against the three tested cancer cell lines wherein AV-6 displayed IC50 values of 1.2 �M, 5.5 �M, and 1.9 �M while AV-14 displayed IC50 values of 4.7 �M, 1.7 �M, and 1.4 �M against HCT-116, MCF-7 and HT-29 cell lines, respectively. These compounds were found to be non toxic to the normal cells (HEK-293). In the cell cycle analysis and JC-1 studies, these compounds induce mitocondria mediated apoptosis. In the tubulin polymerization inhibition studies, AV-6 displayed significant tubulin polymerization inhibition potential. In the molecular docking and simulation studies, these compounds fit well in the active site of colchicine. � 2022 Elsevier B.V.Item Morpholine substituted quinazoline derivatives as anticancer agents against MCF-7, A549 and SHSY-5Y cancer cell lines and mechanistic studies(Royal Society of Chemistry, 2022-04-05T00:00:00) Dwivedi, Ashish Ranjan; Kumar, Vijay; Prashar, Vikash; Verma, Akash; Kumar, Naveen; Parkash, Jyoti; Kumar, VinodA series of morpholine substituted quinazoline derivatives have been synthesized and evaluated for cytotoxic potential against A549, MCF-7 and SHSY-5Y cancer cell lines. These compounds were found to be non-toxic against HEK293 cells at 25 ?M and hence display anticancer potential. In these series compounds, AK-3 and AK-10 displayed significant cytotoxic activity against all the three cell lines. AK-3 displayed IC50 values of 10.38 � 0.27 ?M, 6.44 � 0.29 ?M and 9.54 � 0.15 ?M against A549, MCF-7 and SHSY-5Y cancer cell lines. Similarly, AK-10 showed IC50 values of 8.55 � 0.67 ?M, 3.15 � 0.23 ?M and 3.36 � 0.29 ?M against A549, MCF-7 and SHSY-5Y, respectively. In the mechanistic studies, it was found that AK-3 and AK-10 inhibit the cell proliferation in the G1 phase of the cell cycle and the primary cause of death of the cells was found to be through apoptosis. Thus, morpholine based quinazoline derivatives have the potential to be developed as potent anticancer drug molecules. � 2022 RSCItem Role of peroxisome proliferator-activated receptor gamma (Ppar?) in different disease states: Recent updates(Bentham Science Publishers, 2020-07-17T00:00:00) Mal, Suvadeep; Dwivedi, Ashish Ranjan; Kumar, Vijay; Kumar, Naveen; Kumar, Bhupinder; Kumar, VinodPeroxisome proliferator-activated receptor (PPAR), a ligand dependant transcription factor, is a member of the nuclear receptor superfamily. PPAR exists in three isoforms i.e. PPAR alpha (PPAR?), PPAR beta (PPAR?), and PPAR gamma (PPAR?). These are multi-functional transcription factors and help in regulating inflammation, type 2 diabetes, lipid concentration in the body, metastasis, and tumor growth or angiogenesis. Activation of PPAR? causes inhibition of growth of cultured human breast, gastric, lung, prostate, and other cancer cells. PPAR? is mainly involved in fatty acid storage, glucose metabolism, and homeo-stasis and adipogenesis regulation. A large number of natural and synthetic ligands bind to PPAR? and modulate its activity. Ligands such as thiazolidinedione troglitazone, rosiglita-zone, pioglitazone effectively bind to PPAR?; however, most of these were found to display severe side effects such as hepatotoxicity, weight gain, cardiovascular complications and bladder tumor. Now the focus is shifted towards the development of dual-acting or pan PPAR ligands. The current review article describes the functions and role of PPAR? in various disease states. In addition, recently reported PPAR? ligands and pan PPAR ligands were dis-cussed in detail. It is envisaged that the present review article may help in the development of potent PPAR ligands with no or minimal side effects. � 2021 Bentham Science Publishers.Item Benzotriazole Substituted 2-Phenylquinazolines as Anticancer Agents: Synthesis, Screening, Antiproliferative and Tubulin Polymerization Inhibition Activity(Bentham Science Publishers, 2022-10-28T00:00:00) Dwivedi, Ashish Ranjan; Rawat, Suraj Singh; Kumar, Vijay; Kumar, Naveen; Kumar, Vinay; Yadav, Ravi Prakash; Baranwal, Somesh; Prasad, Amit; Kumar, VinodAims: Development of anticancer agents targeting tubulin protein. Background: Tubulin protein is being explored as an important target for anticancer drug development. Ligands binding to the colchicine binding site of the tubulin protein act as tubulin polymerization inhibitors and arrest the cell cycle in the G2/M phase. Objective: Synthesis and screening of benzotriazole-substituted 2-phenyl quinazolines as potential anticancer agents. Methods: A series of benzotriazole-substituted quinazoline derivatives have been synthesized and evaluated against human MCF-7 (breast), HeLa (cervical) and HT-29 (colon) cancer cell lines using standard MTT assays. Results: ARV-2 with IC50 values of 3.16 �M, 5.31 �M, 10.6 �M against MCF-7, HELA and HT29 cell lines, respectively displayed the most potent antiproliferative activities in the series while all the compounds were found non-toxic against HEK293 (normal cells). In the mechanistic studies involving cell cycle analysis, apoptosis assay and JC-1 studies, ARV-2 and ARV-3 were found to induce mitochondria-mediated apoptosis. Conclusion: The benzotriazole-substituted 2-phenyl quinazolines have the potential to be developed as potent anticancer agents. � 2023 Bentham Science Publishers.Item Synthesis and screening of novel 4-N-heterocyclic-2-aryl-6,7,8-trimethoxyquinazolines as antiproliferative and tubulin polymerization inhibitors(Elsevier Ltd, 2022-08-28T00:00:00) Dwivedi, Ashish Ranjan; Rawat, Suraj Singh; Kumar, Vijay; Kumar, Naveen; Anand, Piyush; Yadav, Ravi Prakash; Baranwal, Somesh; Prasad, Amit; Kumar, VinodColchicine binding site represent a crucial target for the anticancer drug development especially in view of emerging drug resistance from the currently available chemotherapeutics. A total of 16 novel 4-N-heterocyclic-2-aryl-6,7,8-trimethoxyquinazolines were synthesized and screened for antiproliferative and tubulin polymerization inhibition potential. The synthesized compounds were evaluated against MCF-7, HeLa and HT-29 cancer cell lines and normal cell line HEK-293 T. In the series, 2?aryl group with 4?bromophenyl substitution displayed IC50 values of 6.37 �M, 17.43 �M, 6.76 �M and 4?chlorophenyl substitution displayed IC50 values of 2.16 �M, 8.53 �M, 10.42 �M against MCF-7, HELA and HT29 cancer cell lines, respectively. In the mechanistic studies involving cell cycle analysis, apoptosis assay and JC-1 studies, both the lead compounds were found to induce mitochondria mediated apoptosis and lead molecule with 4?chlorophenyl substitution displayed significant tubulin polymerization inhibition activity. In the computation studies, lead molecule displayed significant binding affinites in the colchicine domain and showed good thermodynamic stability during 100 ns MD simulation studies. 4-N-Heterocyclic-2-aryl-6,7,8-trimethoxyquinazolines showed appreciable drug like characteristics and can be developed as potent anticancer agents. � 2022 Elsevier LtdItem Caesium carbonate promoted regioselective O-functionalization of 4,6-diphenylpyrimidin-2(1H)-ones under mild conditions and mechanistic insight(Royal Society of Chemistry, 2023-06-05T00:00:00) Kumar, Vijay; Singh, Praval Pratap; Dwivedi, Ashish Ranjan; Kumar, Naveen; Rakesh kumar, None; Chandra Sahoo, Subash; Chakraborty, Sudip; Kumar, VinodA facile one-step catalyst free methodology has been developed for the regioselective functionalization of 4,6-diphenylpyrimidin-2(1H)-ones under mild conditions. Selectivity towards the O-regioisomer was achieved by using Cs2CO3 in DMF without use of any coupling reagents. A total of 14 regioselective O-alkylated 4,6-diphenylpyrimidines were synthesized in 81-91% yield. In the DFT studies it was observed that the transition state for the formation of the O-regioisomer is more favourable with Cs2CO3 as compared to K2CO3. Furthermore, this methodology was extended to increase the O/N ratio for the alkylation of 2-phenylquinazolin-4(3H)-one derivatives. � 2023 The Royal Society of Chemistry.Item Advancements in the development of multi-target directed ligands for the treatment of Alzheimer's disease(Elsevier Ltd, 2022-04-05T00:00:00) Kumar, Naveen; Kumar, Vijay; Anand, Piyush; Kumar, Vinay; Ranjan Dwivedi, Ashish; Kumar, VinodAlzheimer's disease (AD) is a multifactorial irreversible neurological disorder which results in cognitive impairment, loss of cholinergic neurons in synapses of the basal forebrain and neuronal death. Exact pathology of the disease is not yet known however, many hypotheses have been proposed for its treatment. The available treatments including monotherapies and combination therapies are not able to combat the disease effectively because of its complex pathological mechanism. A multipotent drug for AD has the potential to bind or inhibit multiple targets responsible for the progression of the disease like aggregated A?, hyperphosphorylated tau proteins, cholinergic and adrenergic receptors, MAO enzymes, overactivated N-methyl-D-aspartate (NMDA), ?-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor etc. The traditional approach of one disease-one target-one drug has been rationalized to one drug-multi targets for the chronic diseases like AD and cancer. Thus, over the last decade research focus has been shifted towards the development of multi target directed ligands (MTDLs) which can simultaneously inhibit multiple targets and stop or slow the progression of the disease. The MTDLs can be more effective against AD and eliminate any possibility of drug-drug interactions. Many important active pharmacophore units have been fused, merged or incorporated into different scaffolds to synthesize new potent drugs. In the current article, we have described various hypothesis for AD and effectiveness of the MTDLs treatment strategy is discussed in detail. Different chemical scaffolds and their synthetic strategies have been described and important functionalities are identified in the chemical scaffold that have the potential to bind to the multiple targets. The important leads identified in this study with MTDL characteristics have the potential to be developed as drug candidates for the effective treatment of AD. � 2022 Elsevier LtdItem A Review on the Arylpiperazine Derivatives as Potential Therapeutics for the Treatment of Various Neurological Disorders(Bentham Science Publishers, 2022-01-18T00:00:00) Kumar, Bhupinder; Kumar, Naveen; Thakur, Amandeep; Kumar, Vijay; Kumar, Rakesh; Kumar, VinodNeurological disorders are disease conditions related to the neurons and central nervous system (CNS). Any structural, electrical, biochemical, and functional abnormalities in neurons can lead to various types of disorders, like Alzheimer�s disease (AD), depression, Parkinson�s disease (PD), epilepsy, stroke, etc. Currently available medicines are symptomatic and do not treat the disease state. Thus, novel CNS active agents with the potential to completely treat an illness are highly desired. A range of small organic molecules is being explored as potential drug candidates to cure different neurological disorders. In this context, arylpiperazinehas been found to be a versatile scaffold and indispensable pharmacophore in many CNS active agents. Several molecules with arylpiperazine nucleus have been developed as potent leads for the treatment of AD, PD, depression, and other disorders. The arylpiperazine nucleus can be optionally substituted at different chemical structures and offer flexibility for the synthesis of a large number of derivatives. In the current review article, we have explored the role of various arylpiperazine containing scaffolds against different neurological disorders, including AD, PD, and depression. The structure-activity relationship studies were conducted for recognizing potent lead compounds. This review article may provide important insights into the structural requirements for designing and synthesizing effective molecules as curative agents for different neurological disorders. � 2022 Bentham Science Publishers.Item Synthesis and screening of novel 4-N-heterocyclic-2-aryl-6,7,8-trimethoxyquinazolines as antiproliferative and tubulin polymerization inhibitors(Elsevier Ltd, 2022-08-28T00:00:00) Dwivedi, Ashish Ranjan; Rawat, Suraj Singh; Kumar, Vijay; Kumar, Naveen; Anand, Piyush; Yadav, Ravi Prakash; Baranwal, Somesh; Prasad, Amit; Kumar, VinodColchicine binding site represent a crucial target for the anticancer drug development especially in view of emerging drug resistance from the currently available chemotherapeutics. A total of 16 novel 4-N-heterocyclic-2-aryl-6,7,8-trimethoxyquinazolines were synthesized and screened for antiproliferative and tubulin polymerization inhibition potential. The synthesized compounds were evaluated against MCF-7, HeLa and HT-29 cancer cell lines and normal cell line HEK-293 T. In the series, 2?aryl group with 4?bromophenyl substitution displayed IC50 values of 6.37 �M, 17.43 �M, 6.76 �M and 4?chlorophenyl substitution displayed IC50 values of 2.16 �M, 8.53 �M, 10.42 �M against MCF-7, HELA and HT29 cancer cell lines, respectively. In the mechanistic studies involving cell cycle analysis, apoptosis assay and JC-1 studies, both the lead compounds were found to induce mitochondria mediated apoptosis and lead molecule with 4?chlorophenyl substitution displayed significant tubulin polymerization inhibition activity. In the computation studies, lead molecule displayed significant binding affinites in the colchicine domain and showed good thermodynamic stability during 100 ns MD simulation studies. 4-N-Heterocyclic-2-aryl-6,7,8-trimethoxyquinazolines showed appreciable drug like characteristics and can be developed as potent anticancer agents. � 2022 Elsevier LtdItem Benzotriazole Substituted 2-Phenylquinazolines as Anticancer Agents: Synthesis, Screening, Antiproliferative and Tubulin Polymerization Inhibition Activity(Bentham Science Publishers, 2022-10-28T00:00:00) Dwivedi, Ashish Ranjan; Rawat, Suraj Singh; Kumar, Vijay; Kumar, Naveen; Kumar, Vinay; Yadav, Ravi Prakash; Baranwal, Somesh; Prasad, Amit; Kumar, VinodAims: Development of anticancer agents targeting tubulin protein. Background: Tubulin protein is being explored as an important target for anticancer drug development. Ligands binding to the colchicine binding site of the tubulin protein act as tubulin polymerization inhibitors and arrest the cell cycle in the G2/M phase. Objective: Synthesis and screening of benzotriazole-substituted 2-phenyl quinazolines as potential anticancer agents. Methods: A series of benzotriazole-substituted quinazoline derivatives have been synthesized and evaluated against human MCF-7 (breast), HeLa (cervical) and HT-29 (colon) cancer cell lines using standard MTT assays. Results: ARV-2 with IC50 values of 3.16 �M, 5.31 �M, 10.6 �M against MCF-7, HELA and HT29 cell lines, respectively displayed the most potent antiproliferative activities in the series while all the compounds were found non-toxic against HEK293 (normal cells). In the mechanistic studies involving cell cycle analysis, apoptosis assay and JC-1 studies, ARV-2 and ARV-3 were found to induce mitochondria-mediated apoptosis. Conclusion: The benzotriazole-substituted 2-phenyl quinazolines have the potential to be developed as potent anticancer agents. � 2023 Bentham Science Publishers.