School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
4 results
Search Results
Item miRNAs as Therapeutic Target in Obesity and Cancer(Springer Singapore, 2021-07-18T00:00:00) Prajapati, Kumari Sunita; Shuaib, Mohd; Kushwaha, Prem Prakash; Singh, Atul Kumar; Sharma, Rahul; Kumar, ShashankMicroRNAs are small non-coding RNAs that regulate the expression of many genes. Alteration of microRNA expressions is associated with the occurrence of diseases including cancer, obesity, and obesity-related cancer. miRNAs are also known to regulate different cancer-related gene expressions indicating microRNAs could function as tumor suppressors and oncogenes. Obesity and cancer are the two critical diseases affecting millions of people all over the world. Obesity has been associated with incidence and a major risk factor for the occurrence of diseases like diabetes, cardiovascular disease, and various cancers. Synthesis of miRNAs-based therapeutics like miRNA mimics, anti-miR oligonucleotides is going on to cure obesity, cancer, and obesity-associated cancer. miRNAs emerged as a potential biomarker and being considered as a diagnostic, prognostic, and therapeutic target for the treatment of obesity, cancer, and obesity-associated cancer. � The Editor(s) (if applicable) and The Author(s), under exclusive license to Taylor and Francis Pte Ltd. 2021.Item Obesity and Cancer(Springer Singapore, 2021-07-18T00:00:00) Kumar, Shashank; Gupta, SanjayThis book highlights the concordance between signaling pathways that are involved in obesity and cancer cross-talks. It describes the role of cytokines, chemokines, growth factors, insulin, and adipokines in the development of obesity-associated cancers. The book reviews the role of inflammatory signaling pathways such as estrogen-mediated signaling, mTOR and AMP-activated protein kinase pathway and the involvement of adaptive and innate immunity, oxidative stress, gene polymorphism, dietary phytochemicals, and miRNAs in obesity and cancer. In addition, it covers the latest research on the drugs and natural therapeutic agents that target obesity-induced cancers and discusses various in vivo models for studying obesity and obesity-associated cancer. Lastly, it analyses the role of genetic polymorphisms in the obesity-related genes that influence cancer development. The book is a useful resource for researchers in the field of cancer, pharmacology, food chemistry, and clinical biochemistry. � The Editor(s) (if applicable) and The Author(s), under exclusive license to Taylor and Francis Pte Ltd. 2021.Item Characterization of phytochemicals and validation of antioxidant and anticancer activity in some Indian polyherbal ayurvedic products(Springer, 2021-03-13T00:00:00) Kushwaha, Prem Prakash; Kumar, Ramesh; Neog, Panchi Rani; Behara, Malay Ranjan; Singh, Pratibha; Kumar, Ajay; Prajapati, Kumari Sunita; Singh, Atul Kumar; Shuaib, Mohd; Sharma, Amit Kumar; Pandey, Abhay Kumar; Kumar, ShashankIn the present comparative study, the authors studied the antioxidant and anticancer activity of commercially available polyherbal Indian Ayurvedic products namely Divya Sarvakalp Kwath (DSKK), Divya Sanjivani Vati (DSV), Kanchanar Guggulu (KG) and Shakti Drop (SD). Authors also quantified phenolic and flavonoid contents in the samples. Solid powdered samples (DSKK, DSV, and KG) were extracted in methanol and water (1:1) using cold extraction method. Spectrophotometry technique was used to quantify the phytochemicals present in test samples. DSKK showed comparatively higher content of total phenolics (247.65 � 0.05 ?gPGE/g) and flavonoid (34.66 � 0.19 �gQE/mg). Radical scavenging, metal ion chelation and reducing potential of test products were studied using nitric oxide scavenging, DPPH, metal ion chelation, reducing power ability, and phosphomolybdate in vitro antioxidant assays at different concentration. Dose-dependent antioxidant activity was observed in all the test samples at 100�500��g or �l/ml concentration. Anticancer efficacy of the test samples were studied in lung (A549), colon (Colo205), and breast cancer (MCF7) cell lines at different concentrations (10�100��g or �l/ml) using MTT assay. Confocal microscopy was used to reveal the apoptotic induction, mitochondrial membrane integrity disruption and reactive oxygen species production ability of test products in cancer cells. The present study revealed that DSKK possesses comparatively better antioxidant potential and SD has potent anticancer activity against breast cancer cells. � 2021, Society for Plant Research.Item Natural Compounds Are Smart Players in Context to Anticancer Potential of Receptor Tyrosine Kinases: An In Silico and In Vitro Advancement(Springer, 2017) Singh, Pushpendra; Kumar, Shashank; Bast, FelixCancer is the ruling cause of mortality worldwide. Chemotherapeutic toxicity and drug resistance have provided impulsion for the formulation of new anticancer agents. Receptor tyrosine kinases (RTKs) are the most activated cell surface receptors for copious polypeptide growth factors, cytokines, and hormones that play a considerable role in cancer initiation, promotion, and progression. Natural products are a prime source of new anticancer drugs and their leads. The objective of computer-aided drug design (CADD) is to enhance the set of compounds with prudent active drug-like properties and eliminate inactive, toxic, poor absorption, distribution, metabolism, and excretion toxicity (ADME/T) compounds. In the present chapter, in silico advancement of anticancer natural compounds and molecular mechanisms of action of flavonoids, viz., genistein, myricetin, quercetin, luteolin, morin, kaempferol, catechin, and epigallocatechin gallate (EGCG), on RTK and PI3K signaling pathway attributing to their potential anticancer activity have been discussed.