School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Repurposing FDA-approved anti-diabetic drug to target H. pylori peptidyl deformylase using computer-based drug discovery approach
    (Taylor and Francis Ltd., 2022-10-06T00:00:00) Singh, Atul Kumar; Maurya, Santosh; Kumar, Shashank
    Peptide deformylase (PDF), a metalloenzyme is an important and attractive target in antibacterial drug discovery. It removes the N-formyl group from the nascent peptide and generates a mature N-terminal end of the protein molecule. Acarbose is an FDA-approved microbial origin anti-diabetic drug and is known to alter the gut microbiota in clinical studies. The present study first time identifies the binding efficacy of acarbose isolated from a natural source against PDF. We performed molecular docking and molecular dynamics (MD) simulation studies to check the binding efficacy of acarbose with the catalytic site of Helicobacter pylori PDF. Molecular docking results of acarbose complexed with PDF showed a good docking score (?12.55 kcal/mole) in comparison to standard drug bind with PDF (?8.99 kcal/mole). Interaction with the amino acids (Gly95, Glu139, His138, Gly46 and Glu940) and metal ion present at the catalytic site of the test protein was found to be common in PDF during interaction with the acarbose and actinonin. Various parameters such as RMSD, RMSF, Rg, SASA, Hydrogen-bond formation, energy landscape and principal component analysis showed that the acarbose form stable and energetically stable complex with PDF in comparison to actinonin. Taken together, our study concludes that the acarbose possesses significant efficacy in binding at the catalytic site of H. pylori PDF. Acarbose is a FDA-approved anti-diabetic drug thus its antibacterial efficacy may be directly studied in clinical trials. Further, the in vitro and in vivo studies are needed to study the antibacterial mode of action of acarbose in physiological conditions. � 2022 Informa UK Limited, trading as Taylor & Francis Group.
  • Item
    Pharmacological potential of serially extracted Solanum xanthocarpum fruit extracts and their phytochemical characterization
    (Taylor and Francis Ltd., 2022-05-23T00:00:00) Kumar, Shashank; Pandey, Abhay K.
    Pharmacological potential of serially extracted Solanum xanthocarpum fruit (SXF) extracts in terms of antioxidant, anticancer, and antibacterial activities was evaluated. Chemical characterization of the potent extract was done by HPLC, LC-MS-MS, and GC-MS techniques. In vitro antioxidant models, viz. hydroxyl radical scavenging, metal ion chelation, total antioxidant capacity, and ferric reducing antioxidant power, were used to assess the antioxidant potential of extract. Cytotoxicity of the SXF extracts was tested against prostate, ovary, and breast cancer cell lines (DU-145, IGR-OV-1, and MCF-7) using sulforhodamine (SRB) assay. The antibacterial potential was assessed against Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Klebsiella pneumonia, and Escherichia coli bacteria. Results indicated potential pharmacological activities and the presence of pharmacologically active phytoconstituents in the SKF extracts. � 2022 Taylor & Francis Group, LLC.