School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
3 results
Search Results
Item Targeting cancer stem cells pathways for the effective treatment of cancer(Bentham Science Publishers, 2020) Dwivedi, A.R; Thakur, A; Kumar, V; Skvortsova, I; Kumar, V.Resistance to chemotherapy and relapse are major hurdles for the effective treatment of cancer. Major reason for this is a small sub population of cancer stem cells (CSCs) and its microenvironment. CSCs are critical driving force for several types of cancer, such as gastric, colon, breast and many more. Hence, for the complete eradication of cancer, it is necessary to develop therapeutic approaches that can specifically target CSCs. Chemical agents that target different proteins involved in CSC signaling pathways, either as single agent or simultaneously targeting two or more proteins have generated promising pre-clinical and clinical results. In the current review article, we have discussed various targets and cellular pathways that can be explored for the effective and complete eradication of CSCs. Some latest developments in the field of design, synthesis and screening of ligands to target cancer stem cells have been summarized in the current review article. � 2020 Bentham Science Publishers.Item Recent advances in decarboxylative C-C bond formation using direct or in situ generated alkenyl acids(Taylor and Francis Inc., 2020) Kaur, P; Kumar, V; Kumar, R.In recent years, the reactions of abundantly available, inexpensive, and structurally diverse alkenyl acids (-C=C-COOH) with C-X (X�=�halogen) or C-H coupling partner have emerged as vital strategies for the streamlined synthesis of functionalized alkenes with extrusion of innocuous CO2. Various alkenyl acids such as cinnamic acids can act as stable surrogates for the polymerization prone styrenes/olefins, which otherwise need special attention for their handling and storage. Furthermore, cinnamic acids can be easily prepared through various methodologies including Knoevenagel-Doebner (KD) condensation, Heck coupling reaction, etc. Recently, various one-pot tandem methodologies involving the decarboxylative coupling of KD/Heck sequence with C-H or C-X substrate have come into fore. The present review article edifies about the recent advances, scope and limitations for C-C bond formation via (i) direct decarboxylative functionalization of C-X or C-H substrate with alkenyl acids, (ii) tandem one-pot multicomponent decarboxylative approaches (involving in situ generated alkenyl acids) e.g. coupling of KD/Heck sequences with C-X or C-H substrate. � 2019, � 2019 Taylor & Francis.Item Drug-metabolizing enzymes: role in drug resistance in cancer(Springer, 2020) Kaur, G; Gupta, S.K; Singh, P; Ali, V; Kumar, V; Verma, M.Although continuous researches are going on for the discovery of new chemotherapeutic agents, resistance to these anticancer agents has made it really difficult to reach the fruitful results. There are many causes for this resistance that are being studied by the researchers across the world, but still, success is far because there are several factors that are going along unattended or have been studied less. Drug-metabolizing enzymes (DMEs) are one of these factors, on which less study has been conducted. DMEs include Phase I and Phase II enzymes. Cytochrome P450s (CYPs) are major Phase I enzymes while glutathione-S-transferases (GSTs), UDP-glucuronosyltransferases (UGTs), dihydropyrimidine dehydrogenases are the major enzymes belonging to the Phase II enzymes. These enzymes play an important role in detoxification of the xenobiotics as well as the metabolism of drugs, depending upon the tissue in which they are expressed. When present in tumorous tissues, they cause resistance by metabolizing the drugs and rendering them inactive. In this review, the role of these various enzymes in anticancer drug metabolism and the possibilities for overcoming the resistance have been discussed. � 2020, Federaci�n de Sociedades Espa�olas de Oncolog�a (FESEO).