School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    RNAseq-based phylogenetic reconstruction of Taxaceae and Cephalotaxaceae
    (Wiley, 2018) Majeed, Aasim; Singh, Amandeep; Choudhary, Shurti; Bhardwaj, Pankaj
    Taxaceae and Cephalotaxaceae are the two economically important conifer families. Over the years there has been much controversy over the issue of merging these families. The position of Amentotaxus and Torreya is also ambiguous. Some authors consider them closer to Taxaceae while others deemed them to fit within Cephalotaxaceae. Still, others prefer to raise them to their own tribe. Different morphological, anatomical, embryological and phylogenetic evidence supports one or the other view, making the precise delineation between them unresolved. Here we used an RNAseq?based approach to obtain orthologous genes across the selected species to reconstruct a more robust phylogeny of these families. A total of 233.123 million raw reads were de novo assembled to generate nine different transcript assemblies for the corresponding species. Of the 940 191 assembled transcripts across nine species, we generated 409 734 unigenes, which were clustered into orthologous groups. A total of 331 single?copy complete orthologous groups were selected for phylogenetic analysis. Maximum?likelihood, maximum?parsimony and Bayesian phylogenetic trees showed a sister relationship between Taxaceae and Cephalotaxaceae. Our analysis supports their distinctiveness at the family level and also shows that Amentotaxus and Torreya fit within Cephalotaxaceae.
  • Thumbnail Image
    Item
    Exploring microRNA profiles for circadian clock and flowering development regulation in Himalayan Rhododendron
    (Elsevier, 2018) Choudhary, Shruti; Thakur, Sapna; Majeed, Aasim; Bhardwaj, Pankaj
    miRNA is a non-coding, yet crucial entity in remodeling the genetic architecture. Rhododendron arboreum of Himalayas grows and even flower under fluctuating climate. sRNA from leaves of vegetative and reproductive periods was sequenced to elucidate its seasonal associations. Conserved (256) and novel (210) miRNAs and their precursors were located based on homology with plant databases and transcriptome of the species. 27,139 predicted targets were involved with metabolism, reproduction, and response to abiotic stimuli. A comparative analysis showed differential expression of 198 miRNAs with season-specific abundance of 103 miRNAs. Specific isoforms of 11 miRNA families exhibited a temporal expression and targeted different genes implying a complex regulation. The variable miRNA expression among the tissues of different conditions can be associated with the adaptability of the species, which will prove essential for further study on miRNAs mediating seasonal response. Moreover, exogenous cues also mediate phase transition via networking of flowering pathways and their components. In this context, 18 known families and 77 novel miRNAs modulating 117 genes crucial in circadian entrainment were filtered. A negative correlation was obtained between the expression of 18 of these miRNAs and their targets when tested through quantitative-PCR. It highlighted the role of miRNA-target pairs in perceiving environmental variabilities and monitoring flowering growth. Furthermore, a phylogenetic clustering was performed, which supported the lineage-specific evolution and function of putative miR156 sequence in the species. This documentation of genome-wide profiling of miRNA, their targets, and expression will enhance the understanding of developmental and climate-tolerance strategies in high-altitude trees.
  • Thumbnail Image
    Item
    Genetic diversity and population structure of Melia azedarach in North-Western Plains of India
    (Springer Verlag, 2016) Thakur, Sapna; Choudhary, Shruti; Singh, Amandeep; Ahmad, Kamal; Sharma, Gagan; Majeed, Aasim; Bhardwaj, Pankaj
    Key message: Genetic structure amongM. azedarachpopulations was detected and two subpopulations were present among them. A significant ?isolation by distance? was found inM. azedarachpopulation in North-Western Plains of India. Abstract: Melia azedarach is an important forest tree with pharmaceutical, insecticidal, pesticidal, and commercial significance. It is a good reforestation tree because of its fast growth and drought hardy nature. Genetic variation in a species allows itself to adapt, evolve and respond to environmental stress. It provides the basis for survival of a species and critically influences its evolutionary potential. Assessment of genetic diversity is necessary for improvement and conservation of a species. For this, microsatellite markers are of particular interest given the attributes like co-dominance, reproducibility, hyper variability and abundance throughout the genome. In the present study, we analyzed the genetic diversity and population structure of M. azedarach, an ecologically imperative species growing in the North-Western Plains of India. We developed 43 microsatellite markers, of which 20 were subsequently employed for analysis of diversity and population structure among 33 populations encompassing 318 genotypes representing North-Western Plains of India. A moderate level of diversity (Na?=?5.1, Ho?=?0.506, He?=?0.712, I?=?1.386) was assessed. The highest value of ?K estimated using STRUCTURE indicated 2 subpopulations (K?=?2). AMOVA exhibited 73?% variation within populations and 12?% variation was found among regions. Significant positive correlation between geographical and genetic distance was found (Rxy?=?0.365, P?=?0.010). The present study lays a foundation on a better understanding of genetic dynamics of the species and reveals its diversity and population structure in North-Western Plains of India. ? 2016, Springer-Verlag Berlin Heidelberg.