School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
4 results
Search Results
Item Herbal Remedies for Improving Cancer Treatment Through Modulation of Redox Balance(Springer Singapore, 2022-09-28T00:00:00) Kaur, Sukhchain; Verma, Harkomal; Kaur, Sharanjot; Singh, Subham; Mantha, Anil K.; Dhiman, MonishaThe redox modulation induced by oxidative stress is one of the major cause of the metabolic and inflammatory disorders including cancer. The reactive oxygen species (ROS) produced by various sources in the cell shift the redox homeostasis of cells towards more oxidizing or acidic environment. This shift results in the alterations of normal physiologic functioning of biomolecules as well as causes damage to these biomolecules (proteins, lipids, and DNA/RNA). The excessive ROS and redox modulation are the key factors that support growth, progression, and survival of cancer cells. ROS-induced redox modulation further activates pro-tumorigenic cellular pathways for e.g., PI3K/AKT, HIF-1, and MAPK signaling pathways as well as hinders epigenetic signaling. Increasing evidences demonstrate that long-term side effects of anti-cancer chemotherapy are major concern of medical sciences although modern treatments are quite effective. The combination of various herbal formulations with anti-cancer therapy shows improvement in treatment effectiveness in cancer patients. Bioactive compounds present in herbal formulations possess antioxidant and anti-cancer properties that help in the regulation of redox status of cancer cells. The synergetic effects of herbal remedies along with conventional treatment are proven as novel therapeutics in cancer progression management. Clinical studies have shown that broad range of herbs and bioactive compounds from various plants having antioxidant, anti-inflammatory properties can suppress the carcinogenesis. In this chapter we will discuss the role of various plants such as Glycyrrhiza glabra, Picrorhiza kurroa, Tinospora cordifolia, Curcuma longa, Ocimum sanctum, Viola odorata, and bioactive compound ferulic acid found in various cereals. The chapter will also focus on various mechanisms involved in the modulation of chemo-toxicity and improvement of efficacy of conventional anti-cancer therapies by these plants. � Springer Nature Singapore Pte Ltd. 2022.Item A short review on cross-link between pyruvate kinase (PKM2) and Glioblastoma Multiforme(Springer, 2021-03-02T00:00:00) Verma, Harkomal; Cholia, Ravi P.; Kaur, Sharanjot; Dhiman, Monisha; Mantha, Anil K.Pyruvate kinase (PK) catalyzes the last irreversible reaction of glycolysis pathway, generating pyruvate and ATP, from Phosphoenol Pyruvate (PEP) and ADP precursors. In mammals, four different tissue-specific isoforms (M1, M2, L and R) of PK exist, which are translated from two genes (PKL and PKR). PKM2 is the highly expressed isoform of PK in cancers, which regulates the aerobic glycolysis via reprogramming cancer cell�s metabolic pathways�to provide an anabolic�advantage to the tumor cells. In addition to the established role of PKM2 in aerobic glycolysis of multiple cancer types, various recent findings have highlighted the non-metabolic functions of PKM2 in brain tumor development. Nuclear PKM2 acts as a co-activator and directly regulates gene transcription. PKM2 dependent transactivation of various oncogenic genes is instrumental in the progression and aggressiveness of Glioblastoma Multiforme (GBM). Also, PKM2 acts as a protein kinase in histone modification which regulates gene expression and tumorigenesis. Ongoing research has explored novel regulatory mechanisms of PKM2 and its association in GBM progression. This review enlists and summarizes the metabolic and non-metabolic roles of PKM2 at the cellular level, and its regulatory function highlights the importance of the nuclear functions of PKM2 in GBM progression, and an emerging role of PKM2 as novel cancer therapeutics. � 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.Item A short review on cross-link between pyruvate kinase (PKM2) and Glioblastoma Multiforme(Springer, 2021-03-02T00:00:00) Verma, Harkomal; Cholia, Ravi P.; Kaur, Sharanjot; Dhiman, Monisha; Mantha, Anil K.Pyruvate kinase (PK) catalyzes the last irreversible reaction of glycolysis pathway, generating pyruvate and ATP, from Phosphoenol Pyruvate (PEP) and ADP precursors. In mammals, four different tissue-specific isoforms (M1, M2, L and R) of PK exist, which are translated from two genes (PKL and PKR). PKM2 is the highly expressed isoform of PK in cancers, which regulates the aerobic glycolysis via reprogramming cancer cell�s metabolic pathways�to provide an anabolic�advantage to the tumor cells. In addition to the established role of PKM2 in aerobic glycolysis of multiple cancer types, various recent findings have highlighted the non-metabolic functions of PKM2 in brain tumor development. Nuclear PKM2 acts as a co-activator and directly regulates gene transcription. PKM2 dependent transactivation of various oncogenic genes is instrumental in the progression and aggressiveness of Glioblastoma Multiforme (GBM). Also, PKM2 acts as a protein kinase in histone modification which regulates gene expression and tumorigenesis. Ongoing research has explored novel regulatory mechanisms of PKM2 and its association in GBM progression. This review enlists and summarizes the metabolic and non-metabolic roles of PKM2 at the cellular level, and its regulatory function highlights the importance of the nuclear functions of PKM2 in GBM progression, and an emerging role of PKM2 as novel cancer therapeutics. � 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.Item Understanding human thiol dioxygenase enzymes: structure to function and biology to pathology(Wiley, 2017) Sarkar, Bibekananda; Kulharia, Mahesh; Mantha, Anil K.Amino acid metabolism is a significant metabolic activity in humans, especially of sulphur-containing amino acids, methionine and cysteine (Cys). Cys is cytotoxic and neurotoxic in nature; hence, mammalian cells maintain a constant intracellular level of Cys. Metabolism of Cys is mainly regulated by two thiol dioxygenases: cysteine dioxygenase (CDO) and 2-aminoethanethiol dioxygenase (ADO). CDO and ADO are the only human thiol dioxygenases reported with a role in Cys metabolism and localized to mitochondria. This metabolic pathway is important in various human disorders, as it is responsible for the synthesis of antioxidant glutathione and is also for the synthesis of hypotaurine and taurine. CDO is the most extensively studied protein, whose high-resolution crystallographic structures have been solved. As compared to CDO, ADO is less studied, even though it has a key role in cysteamine metabolism. To further understand ADO’s structure and function, the three-dimensional structures have been predicted from I-TASSER and SWISS-MODEL servers and validated with PROCHECK software. Structural superimposition approach using iPBA web server further confirmed near-identical structures (including active sites) for the predicted protein models of ADO as compared to CDO. In addition, protein–protein interaction and their association in patho-physiology are crucial in understanding protein functions. Both ADO and CDO interacting partner profiles have been presented using STRING database. In this study, we have predicted a 3Dmodel structure for ADO and summarized the biological roles and the pathological consequences which are associated with the altered expression and functioning of ADO and CDO in case of cancer, neurodegenerative disorders and other human diseases.