School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
3 results
Search Results
Item Organophosphate-pesticides induced survival mechanisms and APE1-mediated Nrf2 regulation in non-small-cell lung cancer cells(John Wiley and Sons Inc, 2020-10-20T00:00:00) Thakur, Shweta; Sarkar, Bibekananda; Dhiman, Monisha; Mantha, Anil K.Epidemiological and molecular studies have indicated that environmental exposure to organophosphate pesticides (OPPs) is associated with increased cancer risk; however, the underlying molecular mechanisms still need to be explained. Increasing cancer incidence is linked�to OPPs-induced oxidative stress (OS). Our study evaluates monocrotophos (MCP) and chlorpyrifos (CP)-induced OS responses and apurinic/apyrimidinic endonuclease 1 (APE1) role in human non-small-cell lung cancer (NSCLC) cells. Our prior study has implicated OPPs-induced base excision repair (BER)-pathway dysregulation and APE1-mediated regulation of transcription factor (TF) c-jun in A549 cells. We further investigated the effects of MCP and CP on apoptosis, proliferation, and APE1's redox-regulation of nuclear factor-like 2 (Nrf2). Data demonstrates that MCP and CP at subtoxic concentrations induced reactive oxygen species generation and oxidative DNA base damage 8-oxo-dG lesions in NCI-H1299 cells. CP moderately upregulated�the apoptosis-inducing factor (AIF) in A549 cells, however, it did not trigger other pro-apoptotic factors viz. caspase-9 and caspase-3, suggesting early caspase-independent apoptosis. However, dose-dependent AIF-downregulation was observed for MCP treatment. Furthermore, CP and MCP treatments upregulated proliferating cell nuclear antigen levels. Immunofluorescent confocal imaging showed the colocalization of APE1 with Nrf2 in 10 �M CP- and MCP-treated NCI-H1299 cells. Immunoprecipitation confirmed that APE1 and Nrf2 physically interacted, indicating the role of APE1-mediated Nrf2 activation following OPPs treatment. This study suggests that low concentration MCP and CP exposure generates OS along with DNA damage, and modulates apoptosis, and APE1-mediated Nrf2 activation, which might be considered as the possible mechanism promoting lung cancer cell survival, suggesting that APE1 may have the potential to become a therapeutic target for the treatment of NSCLC. � 2020 Wiley Periodicals LLCItem Organophosphate-pesticides induced survival mechanisms and APE1-mediated Nrf2 regulation in non-small-cell lung cancer cells(John Wiley and Sons Inc, 2020-10-20T00:00:00) Thakur, Shweta; Sarkar, Bibekananda; Dhiman, Monisha; Mantha, Anil K.Epidemiological and molecular studies have indicated that environmental exposure to organophosphate pesticides (OPPs) is associated with increased cancer risk; however, the underlying molecular mechanisms still need to be explained. Increasing cancer incidence is linked�to OPPs-induced oxidative stress (OS). Our study evaluates monocrotophos (MCP) and chlorpyrifos (CP)-induced OS responses and apurinic/apyrimidinic endonuclease 1 (APE1) role in human non-small-cell lung cancer (NSCLC) cells. Our prior study has implicated OPPs-induced base excision repair (BER)-pathway dysregulation and APE1-mediated regulation of transcription factor (TF) c-jun in A549 cells. We further investigated the effects of MCP and CP on apoptosis, proliferation, and APE1's redox-regulation of nuclear factor-like 2 (Nrf2). Data demonstrates that MCP and CP at subtoxic concentrations induced reactive oxygen species generation and oxidative DNA base damage 8-oxo-dG lesions in NCI-H1299 cells. CP moderately upregulated�the apoptosis-inducing factor (AIF) in A549 cells, however, it did not trigger other pro-apoptotic factors viz. caspase-9 and caspase-3, suggesting early caspase-independent apoptosis. However, dose-dependent AIF-downregulation was observed for MCP treatment. Furthermore, CP and MCP treatments upregulated proliferating cell nuclear antigen levels. Immunofluorescent confocal imaging showed the colocalization of APE1 with Nrf2 in 10 �M CP- and MCP-treated NCI-H1299 cells. Immunoprecipitation confirmed that APE1 and Nrf2 physically interacted, indicating the role of APE1-mediated Nrf2 activation following OPPs treatment. This study suggests that low concentration MCP and CP exposure generates OS along with DNA damage, and modulates apoptosis, and APE1-mediated Nrf2 activation, which might be considered as the possible mechanism promoting lung cancer cell survival, suggesting that APE1 may have the potential to become a therapeutic target for the treatment of NSCLC. � 2020 Wiley Periodicals LLCItem Phytochemical Ginkgolide B Attenuates Amyloid-? amage and Altered Cellular Responses in Human Neuroblastoma SH-SY5Y Cells(IOS Press, 2017) Gill I.; Kaur S.; Kaur N.; Dhiman, Monisha; Mantha, Anil K.Oxidative stress is an upsurge in reactive oxygen/nitrogen species (ROS/RNS), which aggravates damage to cellular components viz. lipids, proteins, and nucleic acids resulting in impaired cellular functions and neurological pathologies including Alzheimer's disease (AD). In the present study, we have examined amyloid-? (A?)-induced oxidative stress responses, a major cause for AD, in the undifferentiated and differentiated human neuroblastoma SH-SY5Y cells. A?1-42-induced oxidative damage was evaluated on lipids by lipid peroxidation; proteins by protein carbonyls; antioxidant status by SOD and GSH enzyme activities; and DNA and RNA damage levels by evaluating the number of AP sites and 8-OHG base damages produced. In addition, the neuro-protective role of the phytochemical ginkgolide B (GB) in countering A?1-42-induced oxidative stress was assessed. We report that the differentiated cells are highly vulnerable to A?1-42-induced oxidative stress events as exerted by the deposition of A? in AD. Results of the current study suggest that the pre-treatment of GB, followed by A?1-42 treatment for 24, displayed neuro-protective potential, which countered A?1-42-induced oxidative stress responses in both undifferentiated and differentiated SH-SY5Y neuronal cells by: 1) hampering production of ROS and RNS; 2) reducing lipid peroxidation; 3) decreasing protein carbonyl content; 4) restoring antioxidant activities of SOD and GSH enzymes; and 5) maintaining genome integrity by reducing the oxidative DNA and RNA base damages. In conclusion, A?1-42 induces oxidative damage to the cellular biomolecules, which are associated with AD pathology, and are protected by the pre-treatment of GB against A?-toxicity. Taken together, this study advocates for phytochemical-based therapeutic interventions against AD.