School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Theoretical investigation of quantum capacitance of Co-doped ?-MnO2 for supercapacitor applications using density functional theory
    (Royal Society of Chemistry, 2023-09-07T00:00:00) Vijayan, Ariya K.; Sreehari, M.S.; Kour, Simran; Dastider, Saptarshi Ghosh; Mondal, Krishnakanta; Sharma, A.L.
    The rapid depletion of fossil fuels and ever-growing energy demand have led to a search for renewable clean energy sources. The storage of renewable energy calls for immediate attention to the fabrication of efficient energy storage devices like supercapacitors (SCs). As an electrode material for SCs, MnO2 has gained wide research interest because of its high theoretical capacitance, variable oxidation state, vast abundance, and low cost. However, the low electric conductivity of MnO2 limits its practical application. The conductivity of MnO2 can be enhanced by tuning the electronic states through substitution doping with cobalt. In the present work, first principles analysis based on density functional theory (DFT) has been used to examine the quantum capacitance (CQC) and surface charge (Q) of Co-doped MnO2. Doping enhanced the structural stability, electrical conductivity, potential window, and quantum capacitance of ?-MnO2. The shortened band gap and localized states near the Fermi level improve the CQC of ?-MnO2. For the narrow potential range (?0.4 to 0.4 V), the CQC is observed to increase with doping concentration. The highest CQC value at +0.4 V is observed to be 2412.59 ?F cm?2 for Mn6Co2O16 (25% doping), five times higher than that of pristine MnO2 (471.18 ?F cm?2). Mn6Co2O16 also exhibits better CQC and �Q� at higher positive bias. Hence, it can be used as an anode material for asymmetric supercapacitors. All these results suggest better capacitive performance of Co-doped ?-MnO2 for aqueous SCs and as an anode material for asymmetric supercapacitors. � 2023 The Royal Society of Chemistry.
  • Item
    Does Water Play a Crucial Role in the Growth of ZnO Nanoclusters in ZnO/Cu Catalyst?
    (American Chemical Society, 2023-05-04T00:00:00) Dastider, Saptarshi Ghosh; Panigrahi, Abhishek Ramachandra; Banerjee, Arup; Haldar, Krishna Kanta; Fortunelli, Alessandro; Mondal, Krishnakanta
    The catalytically active configuration of ZnO/Cu in the commercial ZnO/Cu/Al2O3 catalyst for methanol synthesis from CO2 is still not clear. In this study, we employ density functional theory based methods to shed light on the structure and stoichiometry of ZnO clusters both free in the gas phase and also deposited on the Cu(111) surface under methanol synthesis conditions. Specifically, we investigate the structural evolution of ZnO clusters in the presence of hydrogen and water. We find that the stability of ZnO clusters increases with the concentration of water until the ratio of Zn and OH in the clusters reaches 1:2, with a morphological transition from planar to 3D configurations for clusters containing more than 4 Zn atoms. These clusters exhibit weak interaction with CO2, and water is predicted to block the active center. The Cu(111) surface plays an important role in enhancing the adsorption of CO2 on the ZnO/Cu(111) systems. We infer that ZnO nanostructures covered with OH species may be the morphology of the ZnO during the methanol synthesis from the hydrogenation of CO2 on the industrial catalyst. � 2023 American Chemical Society.
  • Item
    Dithiophosphonate Anchored Heterometallic (Ag(I)/Fe(II)) Molecular Catalysts for Electrochemical Hydrogen Evolution Reaction
    (American Chemical Society, 2022-08-12T00:00:00) Jangid, Dilip Kumar; Dastider, Saptarshi G.; Biswas, Rathindranath; Khirid, Samreet; Meena, Sangeeta; Kumar, Pankaj; Sahoo, Subash C.; Verma, Ved Prakash; Makde, Ravindra D.; Kumar, Ashwani; Jangir, Ravindra; Mondal, Krishnakanta; Haldar, Krishna Kanta; Dhayal, Rajendra S.
    The dichalcogenide ligated molecules in catalysis to produce molecular hydrogen through electroreduction of water are rarely explored. Here, a series of heterometallic [Ag4(S2PFc(OR)4] [where Fc = Fe(?5-C5H4)(?5-C5H5), R = Me, 1; Et, 2; nPr, 3; isoAmyl, 4] clusters were synthesized and characterized by IR, absorption spectroscopy, NMR (1H, 31P), and electrospray ionization mass spectrometry. The molecular structures of 1, 2, and 3 clusters were established by single-crystal X-ray crystallographic analysis. The structural elucidation shows that each triangular face of a tetrahedral silver(I) core is capped by a ferrocenyl dithiophosphonate ligand in a trimetallic triconnective (?3 ?2, ?1) pattern. A comparative electrocatalytic hydrogen evolution reaction of 1-5 (R = iPr, 5) was studied in order to demonstrate the potential of these clusters in water splitting activity. The experimental results reveal that catalytic performance decreases with increases in the length of the carbon chain and branching within the alkoxy (-OR) group of these clusters. Catalytic durability was found effective even after 8 h of a chronoamperometric stability test along with 1500 cycles of linear sweep voltammetry performance, and only 15 mV overpotential was increased at 5 mA/cm2 current density for cluster 1. A catalytic mechanism was proposed by applying density functional theory (DFT) on clusters 1 and 2 as a representative. Here, a ?1 coordinated S-site between Ag4 core and ligand was found a reaction center. The experimental results are also in good accordance with the DFT analysis. � 2022 American Chemical Society.