School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Two dimensional allotropes of arsenene with a wide range of high and anisotropic carrier mobility
    (Royal Society of Chemistry, 2018) Jamdagni, Pooja; Thakur, Anil; Kumar, Ashok; Ahluwalia, P. K.; Pandey, Ravindra
    Considering the rapid development of experimental techniques for fabricating 2D materials in recent years, various monolayers are expected to be experimentally realized in the near future. Motivated by the recent research activities focused on the honeycomb arsenene monolayers, the stability and carrier mobility of non-honeycomb and porous allotropic arsenene are determined using first principles calculations. In addition to five honeycomb structures of arsenene, a total of eight other structures are considered in this study. An extensive analysis comprising energetics, phonon spectra and mechanical properties confirms that these structures are energetically and dynamically stable. All these structures are semiconductors with a broad range of band gaps varying from ?1 eV to ?2.5 eV. Significantly, these monolayer allotropes possess anisotropic carrier mobilities as high as several hundred cm 2 V -1 s -1 which is comparable with well-known 2D materials such as black phosphorene and monolayer MoS 2 . Combining such broad band gaps and superior carrier mobilities, these monolayer allotropes can be promising candidates for the superior performance of the next generation nanoscale devices. We further explore these monolayer allotropes for photocatalytic water splitting and find that arsenene monolayers have potential for usage in visible light driven photocatalytic water splitting.
  • Thumbnail Image
    Item
    Stability and carrier transport properties of phosphorene-based polymorphic nanoribbons
    (Institute of Physics Publishing, 2018) Kaur, Sumandeep; Kumar, Ashok; Srivastava, Sunita; Pandey, Ravindra; Tankeshwar, K.
    Few-layer black phosphorene has recently attracted significant interest in the scientific community. In this paper, we consider several polymorphs of phosphorene nanoribbons (PNRs) and employ deformation potential theory within the effective mass approximation, together with density functional theory, to investigate their structural, mechanical and electronic properties. The results show that the stability of a PNR strongly depends on the direction along which it can be cut from its 2D counterpart. PNRs also exhibit a wide range of line stiffnesses ranging from 6 ?1010 eV m-1 to 18 ?1011 eV m-1, which has little dependence on the edge passivation. Likewise, the calculated electronic properties of PNRs show them to be either a narrow-gap semiconductor (E g < 1 eV) or a wide-gap semiconductor (E g > 1 eV). The carrier mobility of PNRs is found to be comparable to that of black phosphorene. Some of the PNRs show an n-type (p-type) semiconducting character owing to their higher electron (hole) mobility. Passivation of the edges leads to n-type ? p-type transition in many of the PNRs considered. The predicted novel characteristics of PNRs, with a wide range of mechanical and electronic properties, make them potentially suitable for use in nanoscale devices. ? 2018 IOP Publishing Ltd.