School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Cloning, expression and in vitro validation of chimeric multi epitope vaccine candidate against visceral leishmaniasis infection
    (Elsevier Inc., 2023-04-11T00:00:00) Ojha, Rupal; Chand, Kailash; Vellingiri, Balachandar; Prajapati, Vijay Kumar
    Visceral Leishmaniasis or Kala-Azar is one of the most severe and deadly neglected tropical disease caused by the Leishmania parasite. A few number of vaccines are going through different phases in clinical trial but failing of these vaccines in successive phase trial or less efficacy, urge to develop highly immunogenic and cost-effective treatment to get rid of deadly VL. This study focuses on the development of more potent vaccine candidate against VL. The recombinant vaccine candidate LeiSp was expressed in Pichia pastoris, followed by purification and characterization. The purified protein was also tested for any post-translation modification, which favors being a potent immunogenic candidate. Further, the expression modulation of different pro-inflammatory and anti-inflammatory cytokines was evaluated in THP1 cell lines. A significant upregulation in the expression of pro-inflammatory cytokines while no significant changes were observed in the expression of anti-inflammatory cytokines. The impact of recombinant vaccine protein candidates in infected conditions were determined. Here, upon treatment with chimeric vaccine protein candidate, we observed a considerable recovery in the expression level of pro-inflammatory cytokines, which were downregulated upon infection alone. In addition to this, we found a significant decrease in the expression of anti-inflammatory cytokines, which were upregulated during infection alone. We further validated our findings in infected hPBMCs and observed similar expression modulation of pro-inflammatory and anti-inflammatory cytokines with and without treatment. Thus, the present study indicates that the chimeric LeiSp protein which was designed using bioinformatics approaches shows a potential inductive efficacy for pro-inflammatory cytokines in Leishmania-infected cells. � 2023 Elsevier Inc.
  • Item
    Multi-pathogen based chimeric vaccine to fight against COVID-19 and concomitant coinfections
    (Springer Science and Business Media B.V., 2023-05-06T00:00:00) Ojha, Rupal; Singh, Satyendra; Gupta, Nidhi; Kumar, Ketan; Padhi, Aditya K.; Prajapati, Vijay Kumar
    Background: COVID-19 has proved to be a fatal disease of the year 2020, due to which thousands of people globally have lost their lives, and still, the infection cases are at a high rate. Experimental studies suggested that SARS-CoV-2 interacts with various microorganisms, and this coinfection is accountable for the augmentation of infection severity. Methods and results: In this study, we have designed a multi-pathogen vaccine by involving the immunogenic proteins from S. pneumonia, H. influenza, and M. tuberculosis, as they are dominantly associated with SARS-CoV-2. A total of 8 antigenic protein sequences were selected to predict B-cell, HTL, and CTL epitopes restricted to the most prevalent HLA alleles. The selected epitopes were antigenic, non-allergenic, and non-toxic and were linked with adjuvant and linkers to make the vaccine protein more immunogenic, stable, and flexible. The tertiary structure, Ramachandran plot, and discontinuous B-cell epitopes were predicted. Docking and MD simulation study has shown efficient binding of the chimeric vaccine with the TLR4 receptor. Conclusion: The in silico immune simulation analysis has shown a high level of cytokines and IgG after a three-dose injection. Hence, this strategy could be a better way to decrease the disease's severity and could be used as a weapon to prevent this pandemic. � 2023, The Author(s), under exclusive licence to Springer Nature B.V.
  • Item
    Translational vaccinomics and structural filtration algorithm to device multiepitope vaccine for catastrophic monkeypox virus
    (Elsevier Ltd, 2022-12-30T00:00:00) Singh, Satyendra; Rao, Abhishek; Kumar, Ketan; Mishra, Amit; Prajapati, Vijay Kumar
    Recent outbreak of monkeypox disease commenced in April 2022, and on May 7, the first confirmed case was reported. The world health organization then designated monkeypox disease as a public health emergency of international outrage on July 23, after it spread to 70 non-endemic nations in less than 15 days. This catastrophic viral infection encourages the development of antiviral therapeutics due to the lack of specific treatments with negligible adverse effects. This analysis developed a highly immunogenic multiepitope subunit vaccine against the monkeypox virus using an in silico translational vaccinomics technique. Highly antigenic B cell and T cell (HTL and CTL) epitopes were predicted and conjugated with the help of unique linkers. An adjuvant (?-defensin) and a pan-HLA DR sequence were attached at the vaccine construct's N-terminal to invoke a robust immunological response. Additionally, physiochemical, allergic, toxic, and antigenic properties were anticipated. Interactions between the vaccine candidate and the TLR3 demonstrated that the vaccine candidate triggers a robust immunological response. Finally, the stability is confirmed by the molecular dynamics study. In contrast, the modified vaccine candidate's ability to produce a protective immune response were verified by an immune dynamics simulation study conducted via C-ImmSim server. This study validates the generation of B cell, Th cell, and Tc cell populations as well as the production of IFN??. � 2022 Elsevier Ltd