School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
3 results
Search Results
Item Bacillus sp. and arbuscular mycorrhizal fungi consortia enhance wheat nutrient and yield in the second-year field trial: Superior performance in comparison with chemical fertilizers(John Wiley and Sons Inc, 2021-11-20T00:00:00) Yadav, Radheshyam; Ror, Pankaj; Beniwal, Rahul; Kumar, Sanjeev; Ramakrishna, WusirikaAims: The aim of the study is to analyse the effect of microbial consortia for wheat biofortification, growth, yield and soil fertility as part of a 2-year field study and compare it with the use of chemical fertilizers. Methods and Results: A field trial (second year) was conducted with various combinations of plant growth�promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) treatments, ranging from a single inoculant to multiple combinations. The microbial consortia used were Bacillus sp. and AMF based on first-year field trial results. The consortia based on native (CP4) and non-native (AHP3) PGPB (Bacillus sp.) and AMF performed better in terms of nutrients content in wheat grain tissue and yield-related traits compared with chemical fertilizer treated and untreated control. Dual treatment of PGPB (CP4+AHP3) combined with AMF resulted in a significant increase in antioxidants. The spatial colonization of AMF in roots indicated that both the isolates CP4 and AHP3 were able to enhance the AMF colonization in root tissue. Furthermore, soil enzymes� activities were higher with the PGPB and AMF combination giving the best results. A positive correlation was recorded between plant growth, grain yield and soil physicochemical parameters. Conclusions: Our findings confirm that the combined treatment of CP4 and AHP3 and AMF functions as an effective microbial consortium with excellent application prospects for wheat biofortification, grain yield and soil fertility compared with chemical fertilizers. Significance and Impact of Study: The extensive application of chemical fertilizers on low-yielding field sites is a severe concern for cereal crops, especially wheat in the Asian continent. This study serves as a primer for implementing site-specific sustainable agricultural-management practices using a green technology leading to significant gains in agriculture. � 2021 The Society for Applied MicrobiologyItem Bacillus sp. and arbuscular mycorrhizal fungi consortia enhance wheat nutrient and yield in the second-year field trial: Superior performance in comparison with chemical fertilizers(John Wiley and Sons Inc, 2021-11-20T00:00:00) Yadav, Radheshyam; Ror, Pankaj; Beniwal, Rahul; Kumar, Sanjeev; Ramakrishna, WusirikaAims: The aim of the study is to analyse the effect of microbial consortia for wheat biofortification, growth, yield and soil fertility as part of a 2-year field study and compare it with the use of chemical fertilizers. Methods and Results: A field trial (second year) was conducted with various combinations of plant growth�promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) treatments, ranging from a single inoculant to multiple combinations. The microbial consortia used were Bacillus sp. and AMF based on first-year field trial results. The consortia based on native (CP4) and non-native (AHP3) PGPB (Bacillus sp.) and AMF performed better in terms of nutrients content in wheat grain tissue and yield-related traits compared with chemical fertilizer treated and untreated control. Dual treatment of PGPB (CP4+AHP3) combined with AMF resulted in a significant increase in antioxidants. The spatial colonization of AMF in roots indicated that both the isolates CP4 and AHP3 were able to enhance the AMF colonization in root tissue. Furthermore, soil enzymes� activities were higher with the PGPB and AMF combination giving the best results. A positive correlation was recorded between plant growth, grain yield and soil physicochemical parameters. Conclusions: Our findings confirm that the combined treatment of CP4 and AHP3 and AMF functions as an effective microbial consortium with excellent application prospects for wheat biofortification, grain yield and soil fertility compared with chemical fertilizers. Significance and Impact of Study: The extensive application of chemical fertilizers on low-yielding field sites is a severe concern for cereal crops, especially wheat in the Asian continent. This study serves as a primer for implementing site-specific sustainable agricultural-management practices using a green technology leading to significant gains in agriculture. � 2021 The Society for Applied MicrobiologyItem Endophytes as nature's gift to plants to combat abiotic stresses(Oxford University Press, 2022-12-20T00:00:00) Godara, Himanshi; Ramakrishna, WusirikaIn recent decades, scientists have recognized that plants' distinct and immensely dynamic microbial communities are more than just "passengers,"but instead, play an important role in their development, and shielding against abiotic and biotic stresses. Endophytes comprise fungi and bacteria that live within plant tissues and support growth when plants are under stress. All plants in nature are considered to have symbiotic association with endophytes. A comprehensive review of the accessible data suggests that mobility, cell-wall degradation capacity, and reactive oxygen species scavenging are critical attributes for the successful colonization of endophytes. Plants encounter several abiotic stresses caused by climate change and global warming, which have an effect on their growth and production. Abiotic stress like high temperature, salinity, and high precipitation can severely affect plants compared to biotic stress. This review aims to highlight what role endophytes play to aid plant growth under abiotic stress conditions like heat, salinity, and drought. In the current review, we discuss how endophytic microbes can be efficiently used for the improvement and promotion of plant growth and crop production under abiotic stress conditions. � 2022 The Author(s). Published by Oxford University Press on behalf of Applied Microbiology International.