School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
3 results
Search Results
Item Surfactant-assisted dispersion of carbon nanotubes: Mechanism of stabilization and biocompatibility of the surfactant(2013) Singh, R.P.; Jain, S.; Ramarao, P.Nanoparticles (NPs) are thermodynamically unstable system and tend to aggregate to reduce free energy. The aggregation property of NPs results in inhomogeneous exposure of cells to NPs resulting in variable cellular responses. Several types of surfactants are used to stabilize NP dispersions and obtain homogenous dispersions. However, the effects of these surfactants, per se, on cellular responses are not completely known. The present study investigated the application of Pluronic F68 (PF68) for obtaining stable dispersion of NPs using carbon nanotubes as model NPs. PF68-stabilized NP suspensions are stable for long durations and do not show signs of aggregation or settling during storage or after autoclaving. The polyethylene oxide blocks in PF68 provide steric hindrance between adjacent NPs leading to stable NP dispersions. Further, PF68 is biocompatible in nature and does not affect integrity of mitochondria, lysosomes, DNA, and nuclei. Also, PF68 neither induce free radical or cytokine production nor does it interfere with cellular uptake mechanisms. The results of the present study suggest that PF68-assisted dispersion of NPs produced suspensions, which are stable after autoclaving. Further, PF68 does not interfere with normal physiological functions suggesting its application in nanomedicine and nanotoxicity evaluation. ? 2013 Springer Science+Business Media Dordrecht.Item Accumulated polymer degradation products as effector molecules in cytotoxicity of polymeric nanoparticles(2013) Singh, R.P.; Ramarao, P.Polymeric nanoparticles (PNPs) are a promising platform for drug, gene, and vaccine delivery. Although generally regarded as safe, the toxicity of PNPs is not well documented. The present study investigated in vitro toxicity of poly-?-caprolactone, poly(DL-lactic acid), poly(lactide-cocaprolactone), and poly(lactide-co-glycide) NPs and possible mechanism of toxicity. The concentration-dependent effect of PNPs on cell viability was determined in a macrophage (RAW 264.7), hepatocyte (Hep G2), lung epithelial (A549), kidney epithelial (A498), and neuronal (Neuro 2A) cell lines. PNPs show toxicity at high concentrations in all cell lines. PNPs were efficiently internalized by RAW 264.7 cells and stimulated reactive oxygen species and tumor necrosis factor-alpha production. However, reactive nitrogen species and interleukin-6 production as well as lysosomal and mitochondrial stability remained unaffected. The intracellular degradation of PNPs was determined by monitoring changes in osmolality of culture medium and a novel fluorescence recovery after quenching assay. Cell death showed a good correlation with osmolality of culture medium suggesting the role of increased osmolality in cell death. ? The Author 2013. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved.Item Recent Advancements in Small Molecule Inhibitors of Insulin–like Growth Factor-1 Receptor (IGF-1R) Tyrosine Kinase as Anticancer agents(Bentham Science, 2013) Negi, Arvind; Ramarao, P.; Kumar, RajAdvancements in understanding of the genetics, genomics, biochemistry and the pharmacology of cancer in human, have driven the current cancer chemotherapy to intently focus on development of target-based approaches rather than conventional approaches. From among the various targets identified, validated and inhibited at different hallmarks of cancer, protein tyrosine kinases (PTKs) have been exploited the most. Insulin receptors (IRs), insulin like growth factor receptors (IGF-1R) and their hybrid receptors belong to tyrosine kinase receptor (TKR) family, constitute a structural homology among them and generate a growth promoting IGF system on binding with either insulin, IGF-1 or IGF-2. The system induces the mitogenic effects through a torrent of cell signals produced as a result of cross talk with other growth promoting peptides and steroidal hormones, ultimately resulting in hijacking apoptosis and increasing cell proliferation and cell survival in cancer cells. Various strategies such as anti-IGF-1R antibodies, IGF-1 mimetic peptides, antisense strategies, IGF-1R specific peptide aptamers, targeted degradation of IGF-1R and expression of dominant negative IGF- 1R mutants have been explored to inhibit the IGF-1R signaling. However, targeting IGF-1R with small molecules has gained considerable attention in last few years due to their ease of synthesis, ease of optimization of absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters, oral route of administration, lesser side effects and cost effectiveness. The present review provides a broad overview and discusses the highlights on discoveries, SAR studies and binding interactions of small molecules with either IGF-1R active or allosteric sites reported till date.