School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Development of lactadherin based electrochemical biosensor for the detection of platelet microvesicles
    (Central University of Punjab, 2018) Santra, Sneha; Singh, Sunil
    Platelet derived microvesicles (PMVs) are the most abundant membrane vesicles in the blood having a potent pro-inflammatory effect, promote coagulation and affect vascular function which are involved in the pathogenesis of cardiovascular disease including diabetes, thrombosis, and coronary artery diseases. Therefore, it is pertinent to detect PMVs level in blood of an individual which have prognostic potential for cardiovascular diseases. As per literature available, lactadherin is a small (53-66 kDa) multifunctional glycoprotein which plays an important role in the clearance of microvesicles. In the present study, lactadherin based electrochemical biosensor for the detection of PMVs was explored. Polythionine film (as a good electron mediator) was electrochemically deposited on ITO-coated glass through electrochemical process involving cyclic voltammetry (CV) and chronoamperometry. Electrochemically deposited electrode provides ideal adsorbing platform for immobilization of RGDS peptide sequences (Lactadherine binding motif) having binding affinity against active conformation of integrin on PMVs surface. CV and Diffusion Pulse Voltammetry (DPV) measurements showed gradual decrease of v current with the subsequent adsorption of microvesicles poor plasma (MPP), microvesicles rich plasma (MRP) and activated platelets. Decrease of current clearly depicts the presence of microvesicles in blood plasma. Our developed fabricated electrode can have a promising potential for its efficient application in clinical testing of various pathological conditions.