School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    Biodegradable nanoparticulate co-delivery of flavonoid and doxorubicin: Mechanistic exploration and evaluation of anticancer effect in vitro and in vivo
    (Elsevier Ltd, 2021-07-30T00:00:00) Khan, Iliyas; Sarkar, Bibekananda; Joshi, Gaurav; Nakhate, Kartik T.; Ajazuddin; Mantha, Anil K.; Kumar, Raj; Kaul, Ankur; Chaturvedi, Shubhra; Mishra, Anil K.; Gupta, Umesh
    The proposed study involves delivering drug/bioactive using a single nanoplatform based on poly lactic-co-glycolic acid (PLGA) for better efficacy, synergistic effect, and reduced toxicity. PLGA was conjugated to doxorubicin (D1), and this conjugate was used for encapsulation of naringenin (D2) to develop naringenin loaded PLGA-doxorubicin nanoparticles (PDNG). The PDNG NPs were 165.4 � 4.27 nm in size, having 0.112 � 0.035 PDI, with -10.1 � 2.74 zeta potential. The surface morphology was confirmed through transmission electron microscopy (TEM) and atomic force microscopy (AFM). The in vitro studies revealed that PDNG NPs exhibited selective anticancer potential in breast cancer cells, and induced apoptosis with S-phase inhibition via an increase in intrinsic reactive oxygen species (ROS) and altering the mitochondrial potential. The results also signified the efficient uptake of nanoparticles encapsulated drugs by cells besides elevating the caspase level suggesting programmed cell death induction upon treatment. In vivo studies results revealed better half-life (27.35 � 1.58 and 11.98 � 1.21 h for doxorubicin and naringenin) with higher plasma drug concentration. In vivo biodistribution study was also in accordance with the in vitro studies and in line with the in vivo pharmacokinetic. In vivo tumor regression assay portrayed that the formulation PDNG halts the tumor growth and lessen the tumor volume with the stable bodyweight of the mice. Conclusively, the dual delivery approach was beneficial and highly effective against tumor-induced mice. � 2021 The Author(s)
  • Item
    Exploring the magic bullets to identify Achilles� heel in SARS-CoV-2: Delving deeper into the sea of possible therapeutic options in Covid-19 disease: An update
    (Elsevier Ltd, 2020-11-27T00:00:00) Thakur, Shikha; Mayank; Sarkar, Bibekananda; Ansari, Arshad J.; Khandelwal, Akanksha; Arya, Anil; Poduri, Ramarao; Joshi, Gaurav
    The symptoms associated with Covid-19 caused by SARS-CoV-2 in severe conditions can cause multiple organ failure and fatality via a plethora of mechanisms, and it is essential to discover the efficacious and safe drug. For this, a successful strategy is to inhibit in different stages of the SARS-CoV-2 life cycle and host cell reactions. The current review briefly put forth the summary of the SARS-CoV-2 pandemic and highlight the critical areas of understanding in genomics, proteomics, medicinal chemistry, and natural products derived drug discovery. The review further extends to briefly put forth the updates in the drug testing system, biologics, biophysics, and their advances concerning SARS-CoV-2. The salient features include information on SARS-CoV-2 morphology, genomic characterization, and pathophysiology along with important protein targets and how they influence the drug design and development against SARS-CoV-2 and a concerted and integrated approach to target these stages. The review also gives the status of drug design and discovery to identify the drugs acting on critical targets in SARS-CoV-2 and host reactions to treat Covid-19. � 2020 Elsevier Ltd
  • Item
    Organophosphate-pesticides induced survival mechanisms and APE1-mediated Nrf2 regulation in non-small-cell lung cancer cells
    (John Wiley and Sons Inc, 2020-10-20T00:00:00) Thakur, Shweta; Sarkar, Bibekananda; Dhiman, Monisha; Mantha, Anil K.
    Epidemiological and molecular studies have indicated that environmental exposure to organophosphate pesticides (OPPs) is associated with increased cancer risk; however, the underlying molecular mechanisms still need to be explained. Increasing cancer incidence is linked�to OPPs-induced oxidative stress (OS). Our study evaluates monocrotophos (MCP) and chlorpyrifos (CP)-induced OS responses and apurinic/apyrimidinic endonuclease 1 (APE1) role in human non-small-cell lung cancer (NSCLC) cells. Our prior study has implicated OPPs-induced base excision repair (BER)-pathway dysregulation and APE1-mediated regulation of transcription factor (TF) c-jun in A549 cells. We further investigated the effects of MCP and CP on apoptosis, proliferation, and APE1's redox-regulation of nuclear factor-like 2 (Nrf2). Data demonstrates that MCP and CP at subtoxic concentrations induced reactive oxygen species generation and oxidative DNA base damage 8-oxo-dG lesions in NCI-H1299 cells. CP moderately upregulated�the apoptosis-inducing factor (AIF) in A549 cells, however, it did not trigger other pro-apoptotic factors viz. caspase-9 and caspase-3, suggesting early caspase-independent apoptosis. However, dose-dependent AIF-downregulation was observed for MCP treatment. Furthermore, CP and MCP treatments upregulated proliferating cell nuclear antigen levels. Immunofluorescent confocal imaging showed the colocalization of APE1 with Nrf2 in 10 �M CP- and MCP-treated NCI-H1299 cells. Immunoprecipitation confirmed that APE1 and Nrf2 physically interacted, indicating the role of APE1-mediated Nrf2 activation following OPPs treatment. This study suggests that low concentration MCP and CP exposure generates OS along with DNA damage, and modulates apoptosis, and APE1-mediated Nrf2 activation, which might be considered as the possible mechanism promoting lung cancer cell survival, suggesting that APE1 may have the potential to become a therapeutic target for the treatment of NSCLC. � 2020 Wiley Periodicals LLC
  • Item
    Organophosphate-pesticides induced survival mechanisms and APE1-mediated Nrf2 regulation in non-small-cell lung cancer cells
    (John Wiley and Sons Inc, 2020-10-20T00:00:00) Thakur, Shweta; Sarkar, Bibekananda; Dhiman, Monisha; Mantha, Anil K.
    Epidemiological and molecular studies have indicated that environmental exposure to organophosphate pesticides (OPPs) is associated with increased cancer risk; however, the underlying molecular mechanisms still need to be explained. Increasing cancer incidence is linked�to OPPs-induced oxidative stress (OS). Our study evaluates monocrotophos (MCP) and chlorpyrifos (CP)-induced OS responses and apurinic/apyrimidinic endonuclease 1 (APE1) role in human non-small-cell lung cancer (NSCLC) cells. Our prior study has implicated OPPs-induced base excision repair (BER)-pathway dysregulation and APE1-mediated regulation of transcription factor (TF) c-jun in A549 cells. We further investigated the effects of MCP and CP on apoptosis, proliferation, and APE1's redox-regulation of nuclear factor-like 2 (Nrf2). Data demonstrates that MCP and CP at subtoxic concentrations induced reactive oxygen species generation and oxidative DNA base damage 8-oxo-dG lesions in NCI-H1299 cells. CP moderately upregulated�the apoptosis-inducing factor (AIF) in A549 cells, however, it did not trigger other pro-apoptotic factors viz. caspase-9 and caspase-3, suggesting early caspase-independent apoptosis. However, dose-dependent AIF-downregulation was observed for MCP treatment. Furthermore, CP and MCP treatments upregulated proliferating cell nuclear antigen levels. Immunofluorescent confocal imaging showed the colocalization of APE1 with Nrf2 in 10 �M CP- and MCP-treated NCI-H1299 cells. Immunoprecipitation confirmed that APE1 and Nrf2 physically interacted, indicating the role of APE1-mediated Nrf2 activation following OPPs treatment. This study suggests that low concentration MCP and CP exposure generates OS along with DNA damage, and modulates apoptosis, and APE1-mediated Nrf2 activation, which might be considered as the possible mechanism promoting lung cancer cell survival, suggesting that APE1 may have the potential to become a therapeutic target for the treatment of NSCLC. � 2020 Wiley Periodicals LLC
  • Item
    ORGANOPHOSPHATE PESTICIDES PESTER Aβ- INDUCED GENOTOXIC RESPONSES IN CULTURED NEURONAL CELLS: APE1/Ref-1 MEDIATED INTERVENTION
    (Central University of Punjab, 2018) Sarkar, Bibekananda; Mantha, Anil K. and Mittal, Sunil
    Amyloid beta ( ) peptide deposition is the primary cause of neurodegeneration in reasons deposition, but the actual cause is not apparent. Several reports point towards the role of pesticides in the AD pathogenesis, especially organophosphate pesticides (OPPs) that also act as acetylcholinesterase inhibitors (AChEIs) and are reported to be neurotoxic in nature at sub-lethal doses. Monocrotophos (MCP) and Chlorpyrifos (CP) are the most widely used OPPs with highest production and consumption throughout the world. - induced oxidative stress associated with the neurodegeneration in AD has been assessed -35) peptide. Natural compounds like curcumin have been well documented for their ameliorating powers against various neurodegenerative disease models. The cell survival assay showed that MCP and CP kill the neuronal cells in both dose- and time-dependently. Nitro blue tetrazolium (NBT) based assay for determination of intracellular reactive oxygen species (ROS) demonstrated that MCP and CP produce significant oxidative stress in IMR-32 and SH-SY -35) increased oxidative stress in IMR-32 and SH-SY5Y cells, whereas curcumin reduced ROS levels significantly (p