School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
2 results
Search Results
Item Impact of shape (nanofiller vs. nanorod) of TiO2 nanoparticle on free-standing solid polymeric separator for energy storage/conversion devices(John Wiley and Sons Inc., 2019) Arya A.; Saykar N.G.; Sharma A.L.We report the investigation on examining the impact of nanofiller (NF)- versus nanorod (NR)-shaped titanium oxide (TiO2) nanoparticle on the structural, electrochemical, transport, thermal, and dielectric properties of the solid polymer electrolyte (SPE). Thin SPE films comprising of poly(ethylene oxide), sodium hexafluorophosphate, and dispersed with TiO2 NF, TiO2 NR (synthesized by hydrothermal route) has been prepared via solution cast technique. The shape of nanoparticle influences the morphological and structural properties as observed in field emission scanning electron microscope and X-ray diffraction analysis. The highest ionic conductivity was exhibited by the NR dispersed system and is higher than NF dispersed system for all recorded concentration consistently. It is attributed to the formation of the long-range conductive path with NR when compared with NF. In addition, the electrochemical stability window is much higher (~5 V) than the NF-doped system. Furthermore, the dielectric properties of SPE were investigated and fitted in the complete frequency window (1 Hz–1 MHz; T = 40–100 °C @ 10 °C). It is observed that the NR dispersed system shows higher dielectric strength and low relaxation time with respect to NF dispersed system. The results suggest that the NR dispersed SPE possess enhanced properties and is more appropriate for an application in high energy density solid‐state Na ion batteries. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136 , 47361.Item Electron beam induced synthesis of Ru-rGO and its super capacitive behavior(IOP Publishing Ltd, 2019) Saykar N.G.; Phatangare A.; Banerjee I.; Bhoraskar V.N.; Ray A.K.; Mahapatra S.K.We report an in situ synthesis of ruthenium-reduced graphene oxide (Ru-rGO) using 6 MeV electron beam assisted radiolytic reduction method and its supercapacitive behavior. X-ray diffraction (XRD), transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM) explore Ru nanoparticles of size ?2 nm are decorated on rGO sheets. Raman spectroscopy shows I D/I G ratio increased and formation of bilayer rGO after electron beam irradiation. The defect density in Ru-rGO is increased due to the electron beam irradiation as compared to its counterpart GO. The Ru-rGO based supercapacitor exhibits specific capacitance (128.1 ± 5.59) F g-1 at 10 mV s-1 scan rate. The specific capacitance retention of Ru-rGO is up to 99.4% at 900 cycles while it increases to 130% at 5000 cycles. Discharge curve of the supercapacitor involves three current decay processes viz. activation polarization, ohmic polarization and concentration polarization. The highest energy density of (4.125 ± 0.19) W h kg-1 and power density of 1.44 kW kg-1 are achieved with Ru-rGO supercapacitor. This unique electron beam assisted techniques illustrates a promising method of the fabrication of high performance supercapacitor.