School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Pressure and electric field tuning of Schottky contacts in PdSe2/ZT-MoSe2 van der Waals heterostructure
    (Institute of Physics Publishing, 2020) Jakhar, M; Singh, J; Kumar, A; Tankeshwar, K.
    A two-dimensional van der Waals (vdW) heterostructure (PdSe2/ZT-MoSe2) has been investigated through vdW corrected density functional theory. ZT-MoSe2 acts as a Dirac material with an anisotropic Dirac cone and variable Fermi velocity (0.52-1.91 105 ms-1). The intrinsic Schottky barrier height can be effectively tuned by applying external pressure and an electric field to the heterostructure. The p-type Schottky barrier transforms into a p-type ohmic contact at pressure P ? 16 GPa. A positive electric field induces p-type ohmic contact while a negative electric field results in the transition from p-type Schottky contact to n-type Schottky contact, and finally to n-type ohmic contact at the higher values of the field. Moreover, the external positive (negative) electric field induces n-type (p-type) doping of ZT-MoSe2 in the heterostructure and remarkably controls the charge carrier concentration. Our results demonstrate that controlling the external pressure and electric field in a PdSe2/ZT-MoSe2 heterostructure can result in an unprecedented opportunity for the design of high-performance nanodevices. � 2020 IOP Publishing Ltd.
  • Item
    Stability, electronic and mechanical properties of chalcogen (Se and Te) monolayers
    (Royal Society of Chemistry, 2020) Singh, J; Jamdagni, P; Jakhar, M; Kumar, A.
    The successful experimental fabrication of 2D tellurium (Te) has resulted in growing interest in the monolayers of group VI elements. By employing density functional theory, we have explored the stability and electronic and mechanical properties of 1T-MoS2-like chalcogen (?-Se and ?-Te) monolayers. Phonon spectra are free from imaginary modes suggesting these monolayers to be dynamically stable. The stability of these monolayers is further confirmed by room temperature AIMD simulations. Both ?-Se and ?-Te are indirect gap semiconductors with a band gap (calculated using the hybrid HSE06 functional) of 1.16 eV and 1.11 eV, respectively, and these gaps are further tunable with mechanical strains. Both monolayers possess strong absorption spectra in the visible region. The ideal strengths of these monolayers are comparable with those of many existing 2D materials. Significantly, these monolayers possess ultrahigh carrier mobilities of the order of 103 cm2 V-1 s-1. Combining the semiconducting nature, visible light absorption and superior carrier mobilities, these monolayers can be promising candidates for the superior performance of next-generation nanoscale devices. This journal is � the Owner Societies.
  • Thumbnail Image
    Item
    Energetics and electronic structure of novel hybrid dumbbell monolayers
    (American Institute of Physics, 2019) Kaur, S; Singh, J; Kumar, Ashok; Srivastava, S; Tankeshwar, K.
    We report three new hybrid monolayers (C6P4, C6N4 and N6P4) of group-IV and group-V elements in dumbbell structure using density functional theory calculations. C6P4, C6N4 possess sp2 as well as sp3 hybridization in their honeycomb dumbbell structure while N6P4 possess only the sp3 hybridization in its non-honeycomb but dumbbell structure. The magnitude of cohesive energy of these hybrid monolayers suggests that C6N4 is the most favorable monolayer to be formed. We found that C6P4 is metallic while C6N4 and N6P4 are semiconductors. Also, we report as a representative case, the systematic structural phase transition from LHD-C to a new phosphorous allotrope which has been suggested to exists in our cohesive energy calculations. The reported monolayers join the family of two dimensional materials and may possess application in nanoelectronic devices. © 2019 Author(s).