School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
3 results
Search Results
Item Flavonols as cancer preventive agents: Recent updates(Nova Science Publishers, Inc., 2021-06-20T00:00:00) Kumar, Shashank; Singh, PushpendraThis book describes primary results on the leading edge of in silico and in vitro cancer research and summarizes the anticancer activity of pharmacologically important flavonols such as quercetin, morin, kaempferol, fisetin, galangin, diosmetin, and cianidanol. Natural products are a prime source of lead compounds suitable for further modification during drug development. Cancer drug discovery is a risky, costly, and resource-consuming process. In the modern arena, molecular computer modeling in anticancer drug development is utilized to speed up hit identification and optimization of the pharmacological profile. The first chapter of this book deals with computer-aided drug discovery and anticancer drug design using pharmacological active flavonols. In further chapters, the authors discuss the in vitro and in vivo advancement in anticancer research on important flavonols such as quercetin, morin, kaempferol, fisetin, galangin, diosmetin, and cianidanol. Anticancer advancement research related to various cancers is summarized and discussed, giving special emphasis on the effect on apoptosis, migrations, and growth via various signaling pathways. The book encompasses the literature as well as target identification for the selected flavonols for their in silico anticancer potential. Moreover, it also contains experimentation results and discussion on the pharmacological properties, including ADME/T, of the flavonols. Overall, this book can lay a good basis for the subsequent rise for its application as a therapeutic drug in the near future. � 2021 by Nova Science Publishers, Inc. All rights reserved.Item Screening of natural compounds for receptor tyrosine kinase inhibitors: in silico and in vitro investigation in cancer cell lines(Central University of Punjab, 2016) Singh, Pushpendra; Bast, FelixItem Insilco Molecular Docking Study of Natural Compounds On Wild and Mutated Epidermal Growth Factor Receptor(Springer, 2014) Singh, Pushpendra; Bast, FelixThe role played by overexpression of tyrosine kinase epidermal growth factor receptor (EGFR), the transmembrane receptor central to numerous cellular processes comprising cell migration, adhesion, apoptosis, and cell proliferation, has been highlighted in various cancers such as prostate, breast, lung, and ovarian cancers as well as in mutations in the EGFR kinase domain. Although many therapeutic approaches have targetted EGFR, the mutations occurring in the EGFR kinase domain including L858 EGFR and T790/L858R had led to the amplification of EGFR signals, consequently leading to increased cell proliferation and cell growth. The strategies involving the inhibition of EGFR L858 and T790M have been accredited with limited achievement in addition to being associated with unwanted adverse effects as a result of crosstalk of wild-type EGFR. All current EGFR tyrosine kinase inhibitors have been identified as ATP competitive inhibitors of wild-type EGFR possessing aniline and quinazoline moiety on the ligands skeleton. Our results obtained by performing molecular docking study on Maestro 9.3 molecular docking suite indicated that CID5280343 possesses better energy conformation against wild-type EGFR as well as two mutated EGFR. Moreover, it was discovered in this study that the natural compounds CID72276, CID5280445, CID441794, and CID72277 and InterBioScreen's library STOCK1N-78657, STOCK1N-78976, and STOCK1N-78847 have better binding conformation against gatekeeper T790M mutated EGFR concluded to be brought about by means of flexible ligands/receptor-based molecular docking protocol. Miraculous features of these compounds are their various pharmacokinetic and pharmacodynamic parameters which were found to be satisfactory as drug-like molecules. This molecular docking study also summarizes docking free energy, protein-ligands interaction profile, and pharmacokinetic and pharmacodynamic parameter of lead molecules which were tremendously helpful in enhancing the activity of these natural compounds against EGFR.