School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
2 results
Search Results
Item Platelet-derived microvesicles activate human platelets via intracellular calcium mediated reactive oxygen species release(Academic Press Inc., 2022-08-28T00:00:00) Yadav, Pooja; Beura, Samir Kumar; Panigrahi, Abhishek Ramachandra; Bhardwaj, Taniya; Giri, Rajanish; Singh, Sunil KumarPlatelet-derived microvesicles (PMVs) are the most abundant microvesicles in circulation, originating from blood platelets via membrane blebbing. PMVs act as biological cargo carrying key molecules from platelets, including immunomodulatory molecules, growth factors, clotting molecules, and miRNAs that can regulate recipient cellular functions. Formation and release of PMVs play an essential role in the pathophysiology of vascular diseases such as hemostasis, inflammation, and thrombosis. Platelet activation is considered the critical event in thrombosis, and a growing number of evidence suggests that oxidative stress-mediated signaling plays a significant role in platelet activation. Ca2+ is a notable player in the generation of ROS in platelets. Reports have established that microvesicles exhibit dual nature in redox mechanisms as they possess both pro-oxidant and antioxidant machinery. However, the impact of PMVs and their ROS machinery on platelets is still a limited explored area. Here, we have demonstrated that PMVs mediate platelet activation via intracellular ROS generation. PMVs interacted with platelets and induced calcium-mediated intracellular ROS production via NADPH oxidase (NOX), leading to platelet activation. Our findings will open up new insights into the tangible relationship of PMVs with platelets and will further contribute to the therapeutic aspects of PMVs in vascular injury and tissue remodeling. � 2022Item Mechanism underlying N-(3-oxo-dodecanoyl)-L-homoserine lactone mediated intracellular calcium mobilization in human platelets(Academic Press, 2019) Yadav, V.K; Singh, P.K; Sharma, D; Singh, Sunil Kumar; Agarwal,V.Acyl-homoserine lactones (AHLs), are the key autoinducer molecules that mediate Pseudomonas aeruginosa associated quorum sensing. P. aeruginosa produces two types of AHLs; N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12 HSL) and N-butyryl-L-homoserine lactone (C4 HSL). AHLs are not only regulating the virulence gene of bacteria but also influence the host cell functions by interkingdom signaling. In this study, we explored the mechanism of AHLs induced calcium mobilization in human platelets. We found that 3-oxo-C12 HSL but not C4 HSL induces intracellular calcium release. 3-oxo-C12 HSL induced calcium mobilization was majorly contributed from the dense tubular system (DTS). Furthermore, 3-oxo-C12 HSL also stimulates the store-operated Ca2+ entry (SOCE) in platelet. Intracellular calcium rise was significantly lowered in rotenone, and bafilomycin pre-treated platelets suggesting partial involvement of mitochondria and acidic vacuoles. The significant effect of 3-oxo-C12 HSL on calcium mobilization can alter the platelet functions that might results in thrombotic disorders in individuals infected with P. aeruginosa. © 2019