School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Platelet-derived microvesicles activate human platelets via intracellular calcium mediated reactive oxygen species release
    (Academic Press Inc., 2022-08-28T00:00:00) Yadav, Pooja; Beura, Samir Kumar; Panigrahi, Abhishek Ramachandra; Bhardwaj, Taniya; Giri, Rajanish; Singh, Sunil Kumar
    Platelet-derived microvesicles (PMVs) are the most abundant microvesicles in circulation, originating from blood platelets via membrane blebbing. PMVs act as biological cargo carrying key molecules from platelets, including immunomodulatory molecules, growth factors, clotting molecules, and miRNAs that can regulate recipient cellular functions. Formation and release of PMVs play an essential role in the pathophysiology of vascular diseases such as hemostasis, inflammation, and thrombosis. Platelet activation is considered the critical event in thrombosis, and a growing number of evidence suggests that oxidative stress-mediated signaling plays a significant role in platelet activation. Ca2+ is a notable player in the generation of ROS in platelets. Reports have established that microvesicles exhibit dual nature in redox mechanisms as they possess both pro-oxidant and antioxidant machinery. However, the impact of PMVs and their ROS machinery on platelets is still a limited explored area. Here, we have demonstrated that PMVs mediate platelet activation via intracellular ROS generation. PMVs interacted with platelets and induced calcium-mediated intracellular ROS production via NADPH oxidase (NOX), leading to platelet activation. Our findings will open up new insights into the tangible relationship of PMVs with platelets and will further contribute to the therapeutic aspects of PMVs in vascular injury and tissue remodeling. � 2022
  • Item
    Mesoporous nanosilica: A thromboprotective nanomaterial for biomedical applications
    (Elsevier Ltd, 2022-06-17T00:00:00) Singh, Priti; Srivastava, Sameer; Singh, Sunil Kumar
    Nanosilica is widely employed in various biomedical applications because of their tailorable physiochemical properties and excellent biocompatibility. In the present study, we have evaluated interaction of nanosilica with important coagulation components, such as platelets, a highly sensitive cell found in the blood, and coagulation proteins. Mesoporous silica nanoparticles (MSNs) were prepared using sol-gel process and characterized by FESEM and TEM to find out the size and shape of the particles. Different platelet functional parameters including platelet adhesion, aggregation, activation, secretion, clot formation and clot retraction-based studies have been carried out to investigate the impact of synthesized nanosilica on the blood coagulation system. Besides, ROS generation and increase in intracellular calcium was also monitored as they play a pivotal role in regulating platelet functions. The complete detailed study revealed that MSNs neither has stimulatory action towards platelets nor do they show any effective interaction with coagulation proteins. � 2022 Elsevier Ltd