School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 10 of 30
  • Item
    Assessment of tRNAThr and tRNAGln Variants and Mitochondrial Functionality in Parkinson�s Disease (PD) Patients of Tamil Nadu Population
    (Springer, 2023-10-17T00:00:00) Venkatesan, Dhivya; Iyer, Mahalaxmi; Raj, Neethu; Gopalakrishnan, Abilash Valsala; Narayanasamy, Arul; Kumar, Nachimuthu Senthil; Vellingiri, Balachandar
    Parkinson�s disease (PD) is speculated with genetic and environmental factors. At molecular level, the mitochondrial impact is stated to be one of the causative reasons for PD. In this study, we investigated the mitochondrial membrane potential (MMP), reactive oxygen species (ROS) and adenosine triphosphate (ATP) levels along with mitochondrial tRNA alterations among three age categories of PD. By determining the genetic and organellar functionality using molecular techniques, the ROS levels were reported to be high with decreased MMP and ATP in the late-onset age group than in other two age categories. Likewise, the tRNA significancy in tRNAThr and tRNAGln was noticed with C4335T and G15927A mutations in late-onset and early-onset PD groups respectively. Therefore, from the findings, ageing has shown a disruption in tRNA metabolism leading to critical functioning of ATP synthesis and MMP, causing oxidative stress in PD patients. These physiological outcomes show that ageing has a keen role in the divergence of mitochondrial function, thereby proving a correlation with ageing and maintenance of mitochondrial homeostasis in PD. � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
  • Item
    Retinal Changes in Parkinson�s Disease: A Non-invasive Biomarker for Early Diagnosis
    (Springer, 2023-10-13T00:00:00) Subramaniam, Mohana Devi; Aishwarya Janaki, P.; Abishek Kumar, B.; Gopalarethinam, Janani; Nair, Aswathy P.; Mahalaxmi, I.; Vellingiri, Balachandar
    Parkinson�s disease (PD) is caused due to degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) which leads to the depletion of dopamine in the body. The lack of dopamine is mainly due to aggregation of misfolded ?-synuclein which causes motor impairment in PD. Dopamine is also required for normal retinal function and the light�dark vision cycle. Misfolded ?-synuclein present in inner retinal layers causes vision-associated problems in PD patients. Hence, individuals with PD also experience structural and functional changes in the retina. Mutation in LRRK2, PARK2, PARK7, PINK1, or SNCA genes and mitochondria dysfunction also play a role in the pathophysiology of PD. In this review, we discussed the different etiologies which lead to PD and future prospects of employing non-invasive techniques and retinal changes to diagnose the onset of PD earlier. Graphical Abstract: [Figure not available: see fulltext.]. � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
  • Item
    Molecular mechanisms of alcohol's effects on the human body: A review and update
    (John Wiley and Sons Inc, 2023-08-14T00:00:00) Renu, Kaviyarasi; Myakala, Haritha; Chakraborty, Rituraj; Bhattacharya, Sharmishtha; Abuwani, Asmita; Lokhandwala, Mariyam; Vellingiri, Balachandar; Gopalakrishnan, Abilash Valsala
    Alcohol consumption has been linked to numerous negative health outcomes although it has some beneficial effects on moderate dosages, the most severe of which being alcohol-induced hepatitis. The number of people dying from this liver illness has been shown to climb steadily over time, and its prevalence has been increasing. Researchers have found that alcohol consumption primarily affects the brain, leading to a wide range of neurological and psychological diseases. High-alcohol-consumption addicts not only experienced seizures, but also ataxia, aggression, social anxiety, and variceal hemorrhage that ultimately resulted in death, ascites, and schizophrenia. Drugs treating this liver condition are limited and can cause serious side effects like depression. Serine-threonine kinases, cAMP protein kinases, protein kinase C, ERK, RACK 1, Homer 2, and more have all been observed to have their signaling pathways disrupted by alcohol, and alcohol has also been linked to epigenetic changes. In addition, alcohol consumption induces dysbiosis by changing the composition of the microbiome found in the gastrointestinal tract. Although more studies are needed, those that have been done suggest that probiotics aid in keeping the various microbiota concentrations stable. It has been argued that reducing one's alcohol intake may seem less harmful because excessive drinking is a lifestyle disorder. � 2023 Wiley Periodicals LLC.
  • Item
    Epicardial adipose tissue and cardiac lipotoxicity: A review
    (Elsevier Inc., 2023-07-05T00:00:00) Mukherjee, Anirban Goutam; Renu, Kaviyarasi; Gopalakrishnan, Abilash Valsala; Jayaraj, Rama; Dey, Abhijit; Vellingiri, Balachandar; Ganesan, Raja
    Epicardial adipose tissue (EAT) has morphological and physiological contiguity with the myocardium and coronary arteries, making it a visceral fat deposit with some unique properties. Under normal circumstances, EAT exhibits biochemical, mechanical, and thermogenic cardioprotective characteristics. Under clinical processes, epicardial fat can directly impact the heart and coronary arteries by secreting proinflammatory cytokines via vasocrine or paracrine mechanisms. It is still not apparent what factors affect this equilibrium. Returning epicardial fat to its physiological purpose may be possible by enhanced local vascularization, weight loss, and focused pharmacological therapies. This review centers on EAT's developing physiological and pathophysiological dimensions and its various and pioneering clinical utilities. � 2023 Elsevier Inc.
  • Item
    Recent advances in understanding brain cancer metabolomics: a review
    (Springer, 2023-07-10T00:00:00) Mukherjee, Anirban Goutam; Gopalakrishnan, Abilash Valsala; Jayaraj, Rama; Ganesan, Raja; Renu, Kaviyarasi; Vellingiri, Balachandar; Dey, Abhijit; Parveen, Mohamudha
    Regardless of the significant progress made in surgical techniques and adjuvant therapies, brain tumors are a major contributor to cancer-related morbidity and mortality in both pediatric and adult populations. Gliomas represent a significant proportion of cerebral neoplasms, exhibiting diverse levels of malignancy. The etiology and mechanisms of resistance of this malignancy are inadequately comprehended, and the optimization of patient diagnosis and prognosis is a challenge due to the diversity of the disease and the restricted availability of therapeutic options. Metabolomics refers to the comprehensive analysis of endogenous and exogenous small molecules, both in a targeted and untargeted manner, that enables the characterization of an individual�s phenotype and offers valuable insights into cellular activity, particularly in the context of cancer biology, including brain tumor biology. Metabolomics has garnered attention in current years due to its potential to facilitate comprehension of the dynamic spatiotemporal regulatory network of enzymes and metabolites that enables cancer cells to adapt to their environment and foster the development of tumors. Metabolic changes are widely acknowledged as a significant characteristic for tracking the advancement of diseases, treatment efficacy, and identifying novel molecular targets for successful medical management. Metabolomics has emerged as an exciting area for personalized medicine and drug discovery, utilizing advanced analytical techniques such as nuclear magnetic resonance spectroscopy (MRS) and mass spectrometry (MS) to achieve high-throughput analysis. This review examines and highlights the latest developments in MRS, MS, and other technologies in studying human brain tumor metabolomics. � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
  • Item
    Plausible Role of Mitochondrial DNA Copy Number in Neurodegeneration�a Need for Therapeutic Approach in Parkinson�s Disease (PD)
    (Springer, 2023-07-31T00:00:00) Venkatesan, Dhivya; Iyer, Mahalaxmi; Narayanasamy, Arul; Gopalakrishnan, Abilash Valsala; Vellingiri, Balachandar
    Parkinson�s disease (PD) is an advancing age-associated progressive brain disorder which has various diverse factors, among them mitochondrial dysfunction involves in dopaminergic (DA) degeneration. Aging causes a rise in mitochondrial abnormalities which leads to structural and functional modifications in neuronal activity and cell death in PD. This ends in deterioration of mitochondrial function, mitochondrial alterations, mitochondrial DNA copy number (mtDNA CN) and oxidative phosphorylation (OXPHOS) capacity. mtDNA levels or mtDNA CN in PD have reported that mtDNA depletion would be a predisposing factor in PD pathogenesis. To maintain the mtDNA levels, therapeutic approaches have been focused on mitochondrial biogenesis in PD. The depletion of mtDNA levels in PD can be influenced by autophagic dysregulation, apoptosis, neuroinflammation, oxidative stress, sirtuins, and calcium homeostasis. The current review describes the regulation of mtDNA levels and discusses the plausible molecular pathways in mtDNA CN depletion in PD pathogenesis. We conclude by suggesting further research on mtDNA depletion which might show a promising effect in predicting and diagnosing PD. � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
  • Item
    HPV-associated cancers: insights into the mechanistic scenario and latest updates
    (Springer, 2023-06-26T00:00:00) Mukherjee, Anirban Goutam; Ramesh Wanjari, Uddesh; Valsala Gopalakrishnan, Abilash; Jayaraj, Rama; Katturajan, Ramkumar; Kannampuzha, Sandra; Murali, Reshma; Namachivayam, Arunraj; Evan Prince, Sabina; Vellingiri, Balachandar; Dey, Abhijit; Renu, Kaviyarasi
    Cancer and related diseases are the second leading cause of death worldwide. The human papillomavirus (HPV) is an infectious agent that can be spread mainly through sexual contact and has been linked to several malignancies in both sexes. HPV is linked to almost all cases of cervical cancer. It is also linked to many head and neck cancer (HNC) cases, especially oropharyngeal cancer. Also, some HPV-related cancers, like vaginal, vulvar, penile, and anal cancers, are related to the anogenital area. Over the past few decades, testing for and preventing cervical cancer has improved, but anogenital cancers are still harder to confirm. HPV16 and HPV18 have been extensively researched due to their significant carcinogenic potential. The products of two early viral genes, E6 and E7, have been identified as playing crucial roles in cellular transformation, as emphasized by biological investigations. The complete characterization of numerous mechanisms employed by E6 and E7 in undermining the regulation of essential cellular processes has significantly contributed to our comprehension of HPV-induced cancer progression. This review focuses on the various types of cancers caused by HPV infection and also sheds light on the signaling cascades involved in the same. � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
  • Item
    A deeper understanding about the role of uranium toxicity in neurodegeneration
    (Academic Press Inc., 2023-06-15T00:00:00) Vellingiri, Balachandar
    Natural deposits and human-caused releases of uranium have led to its contamination in the nature. Toxic environmental contaminants such as uranium that harm cerebral processes specifically target the brain. Numerous experimental researches have shown that occupational and environmental uranium exposure can result in a wide range of health issues. According to the recent experimental research, uranium can enter the brain after exposure and cause neurobehavioral problems such as elevated motion related activity, disruption of the sleep-wake cycle, poor memory, and elevated anxiety. However, the exact mechanism behind the factor for neurotoxicity by uranium is still uncertain. This review primarily aims on a brief overview of uranium, its route of exposure to the central nervous system, and the likely mechanism of uranium in neurological diseases including oxidative stress, epigenetic modification, and neuronal inflammation has been described, which could present the probable state-of-the-art status of uranium in neurotoxicity. Finally, we offer some preventative strategies to workers who are exposed to uranium at work. In closing, this study highlights the knowledge of uranium's health dangers and underlying toxicological mechanisms is still in its infancy, and there is still more to learn about many contentious discoveries. � 2023 Elsevier Inc.
  • Item
    Artificial intelligence in heavy metals detection: Methodological and ethical challenges
    (Elsevier B.V., 2023-07-02T00:00:00) Yadav, Nidhi; Maurya, Brij Mohan; Chettri, Dewan; Pooja; Pulwani, Chirag; Jajula, Mahesh; kanda, Savleen Singh; babu, Harysh Winster Suresh; Elangovan, Ajay; Velusamy, Parthasarathy; Iyer, Mahalaxmi; Vellingiri, Balachandar
    Heavy metals (HMs) are metallic substances. They enter biotic and abiotic systems through natural and human activities. These HMs have an impact on the atmosphere, soil, and groundwater, and they also affect all living things, especially humans, when they enter the food chain. Therefore, monitoring and removing HMs from the environment and humans are crucial for maintaining HMs-based toxicity. The detection of HMs from environmental and human samples has been performed by techniques such as atomic adsorption spectrometry (AAS) and inductively coupled plasma mass spectrometry (ICP-MS). With the advancement of AI-based technology, HMs are now detected and removed from the environment and human systems. This review discusses the impact of HMs on the environment and human health, their detection and removal techniques, and the integration of recent advancements in AI-based technology for the detection and removal of HMs from environmental and human samples. � 2023 The Author(s)
  • Item
    Onco-Pathogen Mediated Cancer Progression and Associated Signaling Pathways in Cancer Development
    (MDPI, 2023-05-28T00:00:00) Kannampuzha, Sandra; Gopalakrishnan, Abilash Valsala; Padinharayil, Hafiza; Alappat, Reema Rose; Anilkumar, Kavya V.; George, Alex; Dey, Abhijit; Vellingiri, Balachandar; Madhyastha, Harishkumar; Ganesan, Raja; Ramesh, Thiyagarajan; Jayaraj, Rama; Prabakaran, D.S.
    Infection with viruses, bacteria, and parasites are thought to be the underlying cause of about 8�17% of the world�s cancer burden, i.e., approximately one in every five malignancies globally is caused by an infectious pathogen. Oncogenesis is thought to be aided by eleven major pathogens. It is crucial to identify microorganisms that potentially act as human carcinogens and to understand how exposure to such pathogens occur as well as the following carcinogenic pathways they induce. Gaining knowledge in this field will give important suggestions for effective pathogen-driven cancer care, control, and, ultimately, prevention. This review will mainly focus on the major onco-pathogens and the types of cancer caused by them. It will also discuss the major pathways which, when altered, lead to the progression of these cancers. � 2023 by the authors.