School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
2 results
Search Results
Item Dithiophosphonate Anchored Heterometallic (Ag(I)/Fe(II)) Molecular Catalysts for Electrochemical Hydrogen Evolution Reaction(American Chemical Society, 2022-08-12T00:00:00) Jangid, Dilip Kumar; Dastider, Saptarshi G.; Biswas, Rathindranath; Khirid, Samreet; Meena, Sangeeta; Kumar, Pankaj; Sahoo, Subash C.; Verma, Ved Prakash; Makde, Ravindra D.; Kumar, Ashwani; Jangir, Ravindra; Mondal, Krishnakanta; Haldar, Krishna Kanta; Dhayal, Rajendra S.The dichalcogenide ligated molecules in catalysis to produce molecular hydrogen through electroreduction of water are rarely explored. Here, a series of heterometallic [Ag4(S2PFc(OR)4] [where Fc = Fe(?5-C5H4)(?5-C5H5), R = Me, 1; Et, 2; nPr, 3; isoAmyl, 4] clusters were synthesized and characterized by IR, absorption spectroscopy, NMR (1H, 31P), and electrospray ionization mass spectrometry. The molecular structures of 1, 2, and 3 clusters were established by single-crystal X-ray crystallographic analysis. The structural elucidation shows that each triangular face of a tetrahedral silver(I) core is capped by a ferrocenyl dithiophosphonate ligand in a trimetallic triconnective (?3 ?2, ?1) pattern. A comparative electrocatalytic hydrogen evolution reaction of 1-5 (R = iPr, 5) was studied in order to demonstrate the potential of these clusters in water splitting activity. The experimental results reveal that catalytic performance decreases with increases in the length of the carbon chain and branching within the alkoxy (-OR) group of these clusters. Catalytic durability was found effective even after 8 h of a chronoamperometric stability test along with 1500 cycles of linear sweep voltammetry performance, and only 15 mV overpotential was increased at 5 mA/cm2 current density for cluster 1. A catalytic mechanism was proposed by applying density functional theory (DFT) on clusters 1 and 2 as a representative. Here, a ?1 coordinated S-site between Ag4 core and ligand was found a reaction center. The experimental results are also in good accordance with the DFT analysis. � 2022 American Chemical Society.Item Exploration of Pd-catalysed four-component tandem reaction for one-pot assembly of pyrazolo[1,5-c]quinazolines as potential EGFR inhibitors(Academic Press Inc., 2019) Ansari, A.J; Joshi, G; Yadav, U.P; Maurya, A.K; Agnihotri, V.K; Kalra, S; Kumar, R; Singh, S; Sawant, D.M.A series of pyrazolo[1,5-c]quinazolines as EGFR inhibitors was designed and synthesized by highly efficient and novel multicomponent route involving Pd-catalyzed tandem one-pot four-component reaction. The reaction proceeds with good functional group tolerance under a simple condition with excellent regioselectivity and high efficiency. Target compounds were screened against cancer cell lines MDA-MB-231, A549 and H1299. Of these, 9b and 10b exhibited superior anticancer activity (IC50 < 2.5 ?M) to erlotinib and gefitinib. Synthetics were able to inhibit EGFR mediated kinase activity, induced ROS in cancer cells promoting mitochondrial mediated apoptosis via halting cell cycle progression at G1 phase.