School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
3 results
Search Results
Item Synthesis and screening of novel 4-N-heterocyclic-2-aryl-6,7,8-trimethoxyquinazolines as antiproliferative and tubulin polymerization inhibitors(Elsevier Ltd, 2022-08-28T00:00:00) Dwivedi, Ashish Ranjan; Rawat, Suraj Singh; Kumar, Vijay; Kumar, Naveen; Anand, Piyush; Yadav, Ravi Prakash; Baranwal, Somesh; Prasad, Amit; Kumar, VinodColchicine binding site represent a crucial target for the anticancer drug development especially in view of emerging drug resistance from the currently available chemotherapeutics. A total of 16 novel 4-N-heterocyclic-2-aryl-6,7,8-trimethoxyquinazolines were synthesized and screened for antiproliferative and tubulin polymerization inhibition potential. The synthesized compounds were evaluated against MCF-7, HeLa and HT-29 cancer cell lines and normal cell line HEK-293 T. In the series, 2?aryl group with 4?bromophenyl substitution displayed IC50 values of 6.37 �M, 17.43 �M, 6.76 �M and 4?chlorophenyl substitution displayed IC50 values of 2.16 �M, 8.53 �M, 10.42 �M against MCF-7, HELA and HT29 cancer cell lines, respectively. In the mechanistic studies involving cell cycle analysis, apoptosis assay and JC-1 studies, both the lead compounds were found to induce mitochondria mediated apoptosis and lead molecule with 4?chlorophenyl substitution displayed significant tubulin polymerization inhibition activity. In the computation studies, lead molecule displayed significant binding affinites in the colchicine domain and showed good thermodynamic stability during 100 ns MD simulation studies. 4-N-Heterocyclic-2-aryl-6,7,8-trimethoxyquinazolines showed appreciable drug like characteristics and can be developed as potent anticancer agents. � 2022 Elsevier LtdItem Synthesis and screening of novel 4-N-heterocyclic-2-aryl-6,7,8-trimethoxyquinazolines as antiproliferative and tubulin polymerization inhibitors(Elsevier Ltd, 2022-08-28T00:00:00) Dwivedi, Ashish Ranjan; Rawat, Suraj Singh; Kumar, Vijay; Kumar, Naveen; Anand, Piyush; Yadav, Ravi Prakash; Baranwal, Somesh; Prasad, Amit; Kumar, VinodColchicine binding site represent a crucial target for the anticancer drug development especially in view of emerging drug resistance from the currently available chemotherapeutics. A total of 16 novel 4-N-heterocyclic-2-aryl-6,7,8-trimethoxyquinazolines were synthesized and screened for antiproliferative and tubulin polymerization inhibition potential. The synthesized compounds were evaluated against MCF-7, HeLa and HT-29 cancer cell lines and normal cell line HEK-293 T. In the series, 2?aryl group with 4?bromophenyl substitution displayed IC50 values of 6.37 �M, 17.43 �M, 6.76 �M and 4?chlorophenyl substitution displayed IC50 values of 2.16 �M, 8.53 �M, 10.42 �M against MCF-7, HELA and HT29 cancer cell lines, respectively. In the mechanistic studies involving cell cycle analysis, apoptosis assay and JC-1 studies, both the lead compounds were found to induce mitochondria mediated apoptosis and lead molecule with 4?chlorophenyl substitution displayed significant tubulin polymerization inhibition activity. In the computation studies, lead molecule displayed significant binding affinites in the colchicine domain and showed good thermodynamic stability during 100 ns MD simulation studies. 4-N-Heterocyclic-2-aryl-6,7,8-trimethoxyquinazolines showed appreciable drug like characteristics and can be developed as potent anticancer agents. � 2022 Elsevier LtdItem Mechanism of cell cycle regulation and cell proliferation during human viral infection(Academic Press Inc., 2023-02-01T00:00:00) Panda, Mamta; Kalita, Elora; Rao, Abhishek; Prajapati, Vijay KumarOver the history of the coevolution of Host viral interaction, viruses have customized the host cellular machinery into their use for viral genome replication, causing effective infection and ultimately aiming for survival. They do so by inducing subversions to the host cellular pathways like cell cycle via dysregulation of important cell cycle checkpoints by viral encoded proteins, arresting the cell cycle machinery, blocking cytokinesis as well as targeting subnuclear bodies, thus ultimately disorienting the cell proliferation. Both DNA and RNA viruses have been active participants in such manipulation resulting in serious outcomes of cancer. They achieve this by employing different mechanisms�Protein-protein interaction, protein-phosphorylation, degradation, redistribution, viral homolog, and viral regulation of APC at different stages of cell cycle events. Several DNA viruses cause the quiescent staged cells to undergo cell cycle which increases nucleotide pools logistically significantly persuading viral replication whereas few other viruses arrest a particular stage of cell cycle. This allows the latter group to sustain the infection which allows them to escape host immune response and support viral multiplication. Mechanical study of signaling such viral mediated pathways could give insight into understanding the etiology of tumorigenesis and progression. Overall this chapter highlights the possible strategies employed by DNA/RNA viral families which impact the normal cell cycle but facilitate viral infected cell replication. Such information could contribute to comprehending viral infection-associated disorders to further depth. � 2023 Elsevier Inc.