School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Chitosan-supported FeCl3 catalyzed multicomponent synthesis of tetrahydroisoquinoline-indole hybrids with promising activity against chloroquine resistant Plasmodium falciparum
    (Elsevier B.V., 2022-10-26T00:00:00) Kaur, Pavneet; Sharma, Priyanka; Kumar, Vinod; Sahal, Dinkar; Kumar, Rakesh
    An operationally simple three-component coupling of tetrahydroisoquinoline (THIQ), aldehydes and indoles or indole-3-carboxylic acids has been achieved using chitosan-ionic liquid supported FeCl3 (chit-IL@FeCl3) as a recyclable heterogeneous catalyst. The developed waste-free approach provided rapid access to biologically important THIQ-indole hybrids without the use of any additive or ligand. The synthesized THIQ-indole hybrids were evaluated as antiplasmodial agents against chloroquine-sensitive (Pf3D7) and chloroquine-resistant (PfINDO) strains of Plasmodium falciparum. Compounds 4b (most potent against Pf3D7) and 4g (most potent against PfINDO) showed IC50 values of 1.32 and 0.26 �g/mL respectively. Also, 4g showed strong cytocidal action against both rings and trophozoite stages. Furthermore, cytotoxic study against human liver HUH 7 cells revealed that the most potent compound 4g with an excellent resistance index of 0.07 is also relatively non-toxic. The results of this study suggest that THIQ-indole hybrids hold an enormous potential for developing new antimalarial agents with novel mechanism of action. � 2022 Elsevier B.V.
  • Item
    Anticancer Activities of Plant Secondary Metabolites: Rice Callus Suspension Culture as a New Paradigm
    (Elsevier B.V., 2020-12-17T00:00:00) Ramakrishna, Wusirika; Kumari, Anuradha; Rahman, Nafeesa; Mandave, Pallavi
    Plant natural products including alkaloids, polyphenols, terpenoids and flavonoids have been reported to exert anticancer activity by targeting various metabolic pathways. The biological pathways regulated by plant products can serve as novel drug targets. Plant natural compounds or their derivatives used for cancer treatment and some novel plant-based compounds which are used in clinical trials were discussed. Callus suspension culture with secondary metabolites can provide a continuous source of plant pharmaceuticals without time and space limitations. Previous research has shown that rice callus suspension culture can kill >95% cancer cells with no significant effect on the growth of normal cells. The role of candidate genes and metabolites which are likely to be involved in the process and their potential to serve as anticancer and anti-inflammatory agents were discussed. Large scale production of plant callus suspension culture and its constituents can be achieved using elicitors which enhance specific secondary metabolites combined with bioprocess technology. � 2020
  • Item
    Chemical composition and antiproliferative, antioxidant, and proapoptotic effects of fruiting body extracts of the lingzhi or reishi medicinal mushroom, ganoderma lucidum (Agaricomycetes), from India
    (Begell House Inc., 2016) Gill, B.S.; Sharma, P.; Navgeet, Kumar, S.
    Ganoderma lucidum is a renowned medicinal mushroom exploited as a panacea because of the broad spectrum of its bioactivities, which give it invaluable nutritional and clinical implications. This research was implemented with an incentive to explore and quantify various macromolecules encompassed in the oriental fungus; these vary in concentration with respect to the development/growth phase, host plants, and geographic location of collection. Chemical profiling of G. lucidum confirmed the presence of myco-constituents, their amounts varying in response to extreme climatic conditions. G. lucidum extract exhibited elevated levels of all myco-constituents but flavonoids, which were more pronounced when in a parasitic relationship with their host plants. Proapoptotic efficiency portrayed by the extracts against a prostate cancer cell line (PC-3) was also found to be similar. The samples collected from the Bathinda region, with Azadirachta and Acacia trees as the host plants, showed several-fold augmentation in levels of G. lucidum gredients compared with other variants. Elevated levels of myco-constituents highlight their significance in inhibiting prostate cancer cell proliferation, reducing reactive oxygen species, suppressing invasive potential, and inducing apoptosis. It was thus concluded that G. lucidum grown on Azadirachta plants was more efficient in exhibiting potent biological activities than G. lucidum grown on other host plants. ? 2016 Begell House, Inc.
  • Item
    Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles
    (2012) Singh, R.P.; Ramarao, P.
    Silver nanoparticles (Ag NPs) are used in consumer products and wound dressings due to their antimicrobial properties. However, in addition to toxic effects on microbes, Ag NPs can also induce stress responses as well as cytotoxicity in mammalian cells. We observed that Ag NPs are efficiently internalized via scavenger receptor-mediated phagocytosis in murine macrophages. Confocal and electron microscopy analysis revealed that internalized Ag NPs localize in the cytoplasm. Ag NPs cause mitochondrial damage, induce apoptosis and cell death. These effects were abrogated in presence of Ag ion-reactive, thiol-containing compounds suggesting the central of Ag ions in Ag NP toxicity. Quantitative image analysis revealed that intracellular dissolution of Ag NPs occurs about 50 times faster than in water. In conclusion, we demonstrate for the first time that Ag NPs are internalized by scavenger receptors, trafficked to cytoplasm and induce toxicity by releasing Ag ions. ? 2012 Elsevier Ireland Ltd.