School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    High-performance symmetric supercapacitor based on activated carbon-decorated nickel diselenide nanospheres
    (Springer, 2022-11-11T00:00:00) Tanwar, Shweta; Singh, Nirbhay; Sharma, A.L.
    The vital challenge is to advance the electronic conductivity of the transition metal diselenide for their supercapacitor application. In this report, nickel diselenide nanospheres and their decoration by activated carbon are reported by a one-step, surfactant-free hydrothermal technique. The activated carbon-decorated NiSe2 nanospheres (NAC) electrode displays high electrochemical performance than pure NiSe2 nanospheres due to more active sites, enhanced conductivity, and reduced diffusion path of electrons and electrolyte ions for maximum energy storage. The NAC electrode depicts a specific capacity of about 119 C g?1 at 0.3 A g?1. The fabricated symmetric supercapacitor using an NAC electrode shows a high specific capacitance of about 282 F g?1 at 10�mV�s?1. The cycle stability of 70% for ten thousand cycles is exhibited for the fabricated symmetric supercapacitor. It manifests high specific energy of 28�W�h�kg?1 and specific power of value 980�W�kg?1 at 1 A g?1. Device applicability with load is tested at laboratory scale by glowing different color LEDs, and a panel of 26 red LEDs illuminated for 56�min effortlessly. A self-explanatory mechanism has also been proposed to make it easier to realize the readers about glowing LEDs, and their panels. � 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
  • Item
    Mesoporous carbon/titanium dioxide composite as an electrode for symmetric/asymmetric solid?state supercapacitors
    (Elsevier Ltd, 2022-08-27T00:00:00) Arya, Anil; Iqbal, Muzahir; Tanwar, Shweta; Sharma, Annu; Sharma, A.L.; Kumar, Vijay
    This paper reports the successful synthesis of mesoporous carbon/titanium dioxide (MC/TiO2) composite electrodes via the hydrothermal method for supercapacitor (SC) applications. The morphology and structural properties of MC/TiO2 composites were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectra (FTIR). The electrochemical properties were recorded by cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD) with an electrolyte (6 M KOH) in symmetric/asymmetric configuration. The specific capacitance (Cs) evaluated by CV is about 280F/g for composite electrode (95 % capacitance retention after 1000 cycles) and pristine has 150F/g @ 10 mV/s. Enhancement in capacitance is owing to faster charge dynamics within electrode material. The fabricated asymmetric device demonstrates high energy density (30.31 Wh/kg), than the symmetric configuration (?27 Wh/kg). Finally, both symmetric/asymmetric supercapacitors have illuminated a red LED, and strengthens the candidature of composite electrode for energy storage technology. � 2022 Elsevier B.V.
  • Item
    Enhanced capacitive behaviour of graphene nanoplatelets embedded epoxy nanocomposite
    (Springer, 2021-01-06T00:00:00) Raval, Bhargav; Sahare, P.D.; Mahapatra, S.K.; Banerjee, I.
    For the development of advanced polymer nanocomposite processability, high-quality and cost-efficiency plays a crucial role which combines mechanical robustness with functional electrochemical properties. In this study, we fabricated the epoxy/graphene nanocomposite (EGNC) with different wt% ratio of graphene nanoplatelets (GNPs). The EGNCs were fabricated through a solution mixing process and used it as an electrode to enhance electrochemical properties. The GNPs and EGNCs characterized using XRD, Raman spectroscopy, ATR FT-IR, and FE-SEM for the structural conformation and surface morphological study. The electrochemical analysis results show significant improvement in the specific capacitance in the EGNC samples as compared to the blank epoxy film. Specific capacitance 17.74 Fg?1 was recorded at 10 mVs?1 scan rate in 1.0�M KOH electrolyte solution for the 1.0 wt% EGNC film by cyclic voltammetry analysis. The Galvanostatic charge�discharge and Ragone plots also show mended results by the addition of GNPs. � 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.
  • Item
    Porous nanorods by stacked NiO nanoparticulate exhibiting corn-like structure for sustainable environmental and energy applications
    (Royal Society of Chemistry, 2023-07-20T00:00:00) Manjunath, Vishesh; Bimli, Santosh; Singh, Diwakar; Biswas, Rathindranath; Didwal, Pravin N.; Haldar, Krishna Kanta; Deshpande, Nishad G.; Bhobe, Preeti A.; Devan, Rupesh S.
    A porous 1D nanostructure provides much shorter electron transport pathways, thereby helping to improve the life cycle of the device and overcome poor ionic and electronic conductivity, interfacial impedance between electrode-electrolyte interface, and low volumetric energy density. In view of this, we report on the feasibility of 1D porous NiO nanorods comprising interlocked NiO nanoparticles as an active electrode for capturing greenhouse CO2, effective supercapacitors, and efficient electrocatalytic water-splitting applications. The nanorods with a size less than 100 nm were formed by stacking cubic crystalline NiO nanoparticles with dimensions less than 10 nm, providing the necessary porosity. The existence of Ni2+ and its octahedral coordination with O2? is corroborated by XPS and EXAFS. The SAXS profile and BET analysis showed 84.731 m2 g?1 surface area for the porous NiO nanorods. The NiO nanorods provided significant surface-area and the active-surface-sites thus yielded a CO2 uptake of 63 mmol g?1 at 273 K via physisorption, a specific-capacitance (CS) of 368 F g?1, along with a retention of 76.84% after 2500 cycles, and worthy electrocatalytic water splitting with an overpotential of 345 and 441 mV for HER and OER activities, respectively. Therefore, the porous 1D NiO as an active electrode shows multifunctionality toward sustainable environmental and energy applications. � 2023 The Royal Society of Chemistry.