School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
3 results
Search Results
Item Concurrent Assessment of Oxidative Stress and MT-ATP6 Gene Profiling to Facilitate Diagnosis of Autism Spectrum Disorder (ASD) in Tamil Nadu Population(Springer, 2023-03-27T00:00:00) Vellingiri, Balachandar; Venkatesan, Dhivya; Iyer, Mahalaxmi; Mohan, Gomathi; Krishnan, Padmavathi; Sai Krishna, Krothapalli; Sangeetha, R.; Narayanasamy, Arul; Gopalakrishnan, Abilash Valsala; Kumar, Nachimuthu Senthil; Subramaniam, Mohana DeviAutism spectrum disorder (ASD) is a neurodevelopmental disability that causes social impairment, debilitated verbal or nonverbal conversation, and restricted/repeated behavior. Recent research reveals that mitochondrial dysfunction and oxidative stress might play a pivotal role in ASD condition. The goal of this case�control study was to investigate oxidative stress and related alterations in ASD patients. In addition, the impact of mitochondrial DNA (mtDNA) mutations, particularly MT-ATP6, and its link with oxidative stress in ASD was studied. We found that ASD patient�s plasma had lower superoxide dismutase (SOD) and higher catalase (CAT) activity, resulting in lower SOD/CAT ratio. MT-ATP6 mutation analysis revealed that four variations, 8865 G>A, 8684 C>T, 8697 G>A, and 8836 A>G, have a frequency of more than 10% with missense and synonymous (silent) mutations. It was observed that abnormalities in mitochondrial complexes (I, III, V) are more common in ASD, and it may have resulted in MT-ATP6 changes or vice versa. In conclusion, our findings authenticate that oxidative stress and genetics both have an equal and potential role behind ASD and we recommend to conduct more such concurrent research to understand their unique mechanism for better diagnosis and therapeutic for ASD. Graphical Abstract: [Figure not available: see fulltext.] � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Item Visible-Light-Induced Metal- and Photocatalyst-Free Radical Cascade Cyclization of Cinnamamides for Synthesis of Functionalized Dihydroquinolinones(American Chemical Society, 2023-07-18T00:00:00) Nishad, Chandra Shekhar; Suman, Pallav; Saha, Himadri; Banerjee, BiplabVisible-light-promoted metal- and photocatalyst-free radical cascade cyclization of cinnamamides with ?-oxocarboxylic acids is described for sustainable synthesis of diverse pharmaceutically important dihydroquinolinone scaffolds in one pot under mild conditions. The decarboxylative cascade cyclization proceeded efficiently at room temperature without the need for expensive photocatalysts such as Ir or Ru complexes, which indicates the practicability and environmentally benign nature of this protocol. Preliminary mechanistic studies reveal that the blue LED irradiation efficiently cleaves the I-O bond of the hypervalent iodine reagent PhI(O2CCOAr)2 formed through ligand exchange between iodobenzene diacetate and arylglyoxylic acid to initiate the cascade reaction. The synthetic value of this operationally simple and energy-efficient method is further demonstrated by late-stage functionalization of drug molecules in excellent yields. � 2023 American Chemical Society.Item P53-mediated anticancer activity of Citrullus colocynthis extracts(Bentham Science Publishers, 2019) Joshi G.; Kaur J.; Sharma P.; Kaur G.; Bhandari Y.; Kumar R.; Singh S.Background: Current anticancer therapeutics comes with significant side effects and thus focus is shifting towards minimizing the side effects or to avoid the disease altogether. Thus, various natural products are being investigated for their potential therapeutic values which can be easily included in daily diet of a person. Citrullus colocynthis (L.) fruit is commonly used in traditional medicines and is known to have antioxidant effects, thus may possess potent anticancer activity as well. Objectives: To establish the anticancer potential of fruit belonging to Citrullus colocynthis (L.) and delineate the potential targets. Results: In the present study it was found that seed and pulp extracts of the fruit are effective against various cancer cell lines while the normal cells, with lower rate of division, remain largely unaffected. The current study for the first time shows that these extracts function via regulation of p53 pathways and the mode of apoptosis is mostly via mitochondrial (intrinsic) pathway. The biological profiling of the extracts was also validated using molecular modelling studies utilizing the two major polyphenols constituents from colocynths i.e., Isoorientin and Isovitexin. Conclusion: The study suggested that the constituent has a multiple target approach for the inhibition of cancer cell proliferation and inhibition of ROS production via the major apoptotic proteins. All of these outcomes suggest and establish a critical role of ROS accumulation and mitochondrial function in the p53-dependent cell.