School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Energy Evolution, Stabilization, and Mechanotransducer Properties of Fe3 O4 Vortex Nanorings and Nanodisks
    (American Physical Society, 2021-08-02T00:00:00) Niraula, Gopal; Toneto, Denilson; Joshy, Elma; Coaquira, Jose A. H.; Ayesh, Ahmad I.; Garcia, Flavio; Muraca, Diego; Denardin, Juliano C.; Goya, Gerardo F.; Sharma, Surender K.
    Recent reports on spin structures produced in nanomaterials due to confinement of spins imposed by geometrical restrictions are at the center of rising scientific interest. Topological curling magnetic structures (vortices) exhibit unique properties, regarding the energy profile, good colloidal stability in suspensions, manipulation under a low-frequency magnetic field, and torque exertion. The last property provides the potential to mechanically eradicate cancer cells via magnetomechanical actuation using remote ac magnetic fields. Here, we study, theoretically and by micromagnetic simulations, the magnetic energy evolutions for vortex nanosystems, i.e., Fe3O4 nanodisks (NDs) and nanorings (NRs). The obtained results for magnetic energy, magnetic susceptibility, and magnetization reversal confirm that the vortex-domain structure in NRs exhibits better stability and avoids agglomeration in solution, owing to the presence of a central hole, whereas the presence of a vortex core in NDs induces magnetic remanence. Although NDs are found to exert slightly higher torques than NRs, this weakness can be compensated for by a small increase (i.e., approximately equals 20%) in the amplitude of the applied field. Our results provide evidence of the magnetic stability of the curling ground states in NRs and open the possibility of applying these systems to magnetomechanical actuation on single cells for therapeutics in biomedicine, such as cancer-cell destruction by low-frequency torque transduction. � 2021 American Physical Society.
  • Item
    Stoichiometry and Orientation- And Shape-Mediated Switching Field Enhancement of the Heating Properties of Fe3 O4 Circular Nanodiscs
    (American Physical Society, 2021-01-28T00:00:00) Niraula, Gopal; Coaquira, Jose A. H.; Aragon, Fermin H.; Bakuzis, Andris F.; Villar, Bianca M. G.; Garcia, Flavio; Muraca, Diego; Zoppellaro, Giorgio; Ayesh, Ahmad I.; Sharma, Surender K.
    The generation of topological magnetic vortex-domain structures in iron-oxide nanomaterials has promising applications in biomedical scenarios, such as heat generators for hyperthermia treatments. In this report we describe alternative kinds of magnetic-vortex nanoparticles, circular Fe3O4 nanodiscs (NDs), and dissect their heating properties by in-depth investigation of their shape and size, stoichiometry, orientations, and switching field "HS"behaviors, through experiments and theoretical simulation. We find that the stoichiometric NDs show better heating performance than nonstoichiometric materials because of the significant electron hopping between Fe3+ and Fe2+ ion. The higher heating efficiency (in terms of specific absorption rate, SAR) is observed only for the higher switching field regime, an effect that is associated with the parallel and perpendicular alignment of nanodiscs with respect to low and high ac magnetic field, respectively. A higher SAR of approximately 270 W/g is observed at a higher switching field (approximately 700 Oe) for NDs of diameter 770 nm, which increases by a factor of 4 at a switching field of approximately 360 Oe for NDs of diameter 200 nm. The reported results suggest that the heating efficiency in these systems can be enhanced by controlling the switching field, which is, in turn, tuned by size, shape, and orientation of circular magnetic vortex nanodiscs. � 2021 American Physical Society.
  • Item
    Iron content titanium dioxide nanoparticles as exogenous contrast agent for tissue imaging using swept-source optical coherence tomography
    (American Institute of Physics Inc., 2021-01-08T00:00:00) Barkhade, Tejal; Indoliya, Abhishek; Poddar, Raju; Mahapatra, Santosh Kumar; Banerjee, Indrani
    Ex vivo tissue imaging was performed by swept-source optical coherence tomography (SS-OCT) using titanium dioxide (TiO2) and Fe content TiO2 nanoparticles (NPs). The comparative effects of TiO2 and Fe content TiO2 NPs in terms of contrast enhancement, penetration, scattering, and accumulation in the chicken breast tissue have been monitored at different exposure times. Powder NP samples were synthesized using the sol-gel method, and characterization was carried out via transmission electron microscopy, x-ray photoelectron spectroscopy, and diffuse reflectance spectroscopy techniques. Fe incorporation in the TiO2 matrix reduces its toxic effect on tissue skin and produces a safe exogenous contrast agent, which is analyzed by SS-OCT. The scattering coefficients and contrast to noise ratio of the tissues with and without NPs were determined to study the imaging efficacy. The improvement in the coefficient was observed with an increase in the exposure time of NPs. Nano-TiO2 has shown the ability to penetrate within the tissue layer up to 780 ?m while Fe content TiO2 NPs samples showed the lowest rate of penetration up to 210 ?m after a 30 min time interval. � 2021 Author(s).
  • Item
    Synthesis of in situ immobilized iron oxide nanoparticles (Fe3O4) on microcrystalline cellulose: Ecofriendly and recyclable catalyst for Michael addition
    (John Wiley and Sons Ltd, 2021-09-21T00:00:00) Kumar, Bhupender; Reddy, Marri Sameer; Dwivedi, Kartikey Dhar; Dahiya, Amarjeet; Babu, J. Nagendra; Chowhan, L. Raju
    Microcrystalline cellulose-immobilized Fe3O4 magnetic nanoparticles (Fe3O4@MCC) with iron loading 5%�20% are synthesized and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The synthesized nanocomposites were studied for their catalytic activity towards Michael addition reaction by employing 1,3-cyclohexadione/dimedone and styrylisoxazole in an aqueous ethanolic medium. The catalyst with 15% iron loading showed the highest efficiency with an excellent yield. Michael addition reaction is one of the most important reaction for the creation of a carbon�carbon bond and widely used in organic synthesis under mild condition. The prepared catalyst performed well in Michael addition reaction and afforded the product in excellent yield. The products were isolated by simple filtration without use of any chromatographic techniques. The scale-up experiment on 10-mmol scale proved the sustainability of the methodology. The catalyst was recycled, and the recovered catalyst data showed no considerable depreciation in catalytic activity even after 5 consecutive cycles. The advantages of this green and safe procedure include a simple reaction set-up, very mild reaction conditions, high yields, moderate reaction time, recyclable catalyst, and easy separation of the products without use of any tedious separation techniques. � 2021 John Wiley & Sons, Ltd.