School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Evolving strategies and application of proteins and peptide therapeutics in cancer treatment
    (Elsevier Masson s.r.l., 2023-05-05T00:00:00) Mukherjee, Anirban Goutam; Wanjari, Uddesh Ramesh; Gopalakrishnan, Abilash Valsala; Bradu, Pragya; Biswas, Antara; Ganesan, Raja; Renu, Kaviyarasi; Dey, Abhijit; Vellingiri, Balachandar; El Allali, Achraf; Alsamman, Alsamman M.; Zayed, Hatem; George Priya Doss, C.
    Several proteins and peptides have therapeutic potential and can be used for cancer therapy. By binding to cell surface receptors and other indicators uniquely linked with or overexpressed on tumors compared to healthy tissue, protein biologics enhance the active targeting of cancer cells, as opposed to the passive targeting of cells by conventional small-molecule chemotherapeutics. This study focuses on peptide medications that exist to slow or stop tumor growth and the spread of cancer, demonstrating the therapeutic potential of peptides in cancer treatment. As an alternative to standard chemotherapy, peptides that selectively kill cancer cells while sparing healthy tissue are developing. A mountain of clinical evidence supports the efficacy of peptide-based cancer vaccines. Since a single treatment technique may not be sufficient to produce favourable results in the fight against cancer, combination therapy is emerging as an effective option to generate synergistic benefits. One example of this new area is the use of anticancer peptides in combination with nonpeptidic cytotoxic drugs or the combination of immunotherapy with conventional therapies like radiation and chemotherapy. This review focuses on the different natural and synthetic peptides obtained and researched. Discoveries, manufacture, and modifications of peptide drugs, as well as their contemporary applications, are summarized in this review. We also discuss the benefits and difficulties of potential advances in therapeutic peptides. � 2023
  • Item
    Thiazole and Related Heterocyclic Systems as Anticancer Agents: A Review on Synthetic Strategies, Mechanisms of Action and SAR Studies
    (Bentham Science Publishers, 2022-03-21T00:00:00) Sahil; Kaur, Kamalpreet; Jaitak, Vikas
    Background: Cancer is the second leading cause of death worldwide. Many anticancer drugs are commercially available, but lack of selectivity, target specificity, cytotoxicity, and development of resistance lead to serious side effects. Several experiments have been going on to develop compounds with minor or no side effects. Objective: This review mainly emphasizes synthetic strategies, SAR studies, and mechanism of action if thiazole, benzothiazole, and imidazothiazole-containing compounds as anticancer agents. Methods: Recent literature related to thiazole and thiazole-related derivatives endowed with encouraging anticancer potential is reviewed. This review emphasizes contemporary strategies used for the synthesis of thiazole and related derivatives, mechanistic targets, and comprehensive structural activity relationship studies to provide perspective into the rational design of high-efficiency thiazole-based anticancer drug candidates. Results: Exhaustive literature survey indicated that thiazole derivatives are associated with properties of inducing apoptosis and disturbing tubulin assembly. Thiazoles are also associated with the inhibition of NFkB/mTOR/PI3K/AkT and regulation of estrogenmediated activity. Furthermore, thiazole derivatives have been found to modulate critical targets, such as topoisomerase and HDAC. Conclusion: Thiazole derivatives seem to be quite competent and act through various mechanisms. Some of the thiazole derivatives, such as compounds 29, 40, 62, and 74a with IC50 values of 0.05 ?M, 0.00042 ?M, 0.18 ?M, and 0.67 ?M, respectively, not only exhibit anticancer activity, but they also have lower toxicity and better absorption. Therefore, some other similar compounds could be investigated to aid in the development of anticancer pharmacophores. � 2022 Bentham Science Publishers.