School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
5 results
Search Results
Item Exogenous application of biostimulants for As stress tolerance in crop plants(Elsevier, 2023-08-04T00:00:00) Garg, Tashima; Arora, Bhumika; Bokolia, Muskan; Joshi, Anjali; Kumar, Vinay; Kumar, Avneesh; Kaur, SimranjeetArsenic (As) is a nonessential toxic metalloid existing in two different inorganic forms: arsenite As (III) and arsenate As (V) which cause hindrance in plant developmental processes and are hazardous to human beings. As contamination is a major environmental issue as it stimulates physiological and metabolic dysfunctions, for instance, nutrient and redox imbalance, rate of photosynthesis, and membrane integrity, ultimately leading to reduced crop yield. Plants show detoxification processes to overcome As toxic effects by effluxing excess metal ions through metal transporters, accumulating As in the vacuole, and producing antioxidant enzymes. In recent times, the exogenous application of various biostimulants such as hormones, antioxidants, osmolytes, and others is being explored to combat As-mediating injuries to crop plants. These compounds are effective in improving seed germination, antioxidant enzyme activity, plant biomass, and overall growth of the plants. The objective of this chapter is to provide recent knowledge on the biostimulants hallmarks to alleviate As stress in crop plants. � 2023 Elsevier Inc. All rights reserved.Item Plant Growth-Promoting Rhizobacteria (PGPR): Approaches to Alleviate Abiotic Stresses for Enhancement of Growth and Development of Medicinal Plants(MDPI, 2022-11-22T00:00:00) Kumar, Rahul; Swapnil, Prashant; Meena, Mukesh; Selpair, Shweta; Yadav, Bal GovindPlants are constantly exposed to both biotic and abiotic stresses which limit their growth and development and reduce productivity. In order to tolerate them, plants initiate a multitude of stress-specific responses which modulate different physiological, molecular and cellular mechanisms. However, many times the natural methods employed by plants for overcoming the stresses are not sufficient and require external assistance from the rhizosphere. The microbial community in the rhizosphere (known as the rhizomicrobiome) undergoes intraspecific as well as interspecific interaction and signaling. The rhizomicrobiome, as biostimulants, play a pivotal role in stimulating the growth of plants and providing resilience against abiotic stress. Such rhizobacteria which promote the development of plants and increase their yield and immunity are known as PGPR (plant growth promoting rhizobacteria). On the basis of contact, they are classified into two categories, extracellular (in soil around root, root surface and cellular space) and intracellular (nitrogen-fixing bacteria). They show their effects on plant growth directly (i.e., in absence of pathogens) or indirectly. Generally, they make their niche in concentrated form around roots, as the latter exude several nutrients, such as amino acids, lipids, proteins, etc. Rhizobacteria build a special symbiotic relationship with the plant or a section of the plant�s inner tissues. There are free-living PGPRs with the potential to work as biofertilizers. Additionally, studies show that PGPRs can ameliorate the effect of abiotic stresses and help in enhanced growth and development of plants producing therapeutically important compounds. This review focuses on the various mechanisms which are employed by PGPRs to mitigate the effect of different stresses in medicinal plants and enhance tolerance against these stress conditions. � 2022 by the authors.Item Exogenous application of biostimulants for As stress tolerance in crop plants(Elsevier, 2023-08-04T00:00:00) Garg, Tashima; Arora, Bhumika; Bokolia, Muskan; Joshi, Anjali; Kumar, Vinay; Kumar, Avneesh; Kaur, SimranjeetArsenic (As) is a nonessential toxic metalloid existing in two different inorganic forms: arsenite As (III) and arsenate As (V) which cause hindrance in plant developmental processes and are hazardous to human beings. As contamination is a major environmental issue as it stimulates physiological and metabolic dysfunctions, for instance, nutrient and redox imbalance, rate of photosynthesis, and membrane integrity, ultimately leading to reduced crop yield. Plants show detoxification processes to overcome As toxic effects by effluxing excess metal ions through metal transporters, accumulating As in the vacuole, and producing antioxidant enzymes. In recent times, the exogenous application of various biostimulants such as hormones, antioxidants, osmolytes, and others is being explored to combat As-mediating injuries to crop plants. These compounds are effective in improving seed germination, antioxidant enzyme activity, plant biomass, and overall growth of the plants. The objective of this chapter is to provide recent knowledge on the biostimulants hallmarks to alleviate As stress in crop plants. � 2023 Elsevier Inc. All rights reserved.Item Plant Growth-Promoting Rhizobacteria (PGPR): Approaches to Alleviate Abiotic Stresses for Enhancement of Growth and Development of Medicinal Plants(MDPI, 2022-11-22T00:00:00) Kumar, Rahul; Swapnil, Prashant; Meena, Mukesh; Selpair, Shweta; Yadav, Bal GovindPlants are constantly exposed to both biotic and abiotic stresses which limit their growth and development and reduce productivity. In order to tolerate them, plants initiate a multitude of stress-specific responses which modulate different physiological, molecular and cellular mechanisms. However, many times the natural methods employed by plants for overcoming the stresses are not sufficient and require external assistance from the rhizosphere. The microbial community in the rhizosphere (known as the rhizomicrobiome) undergoes intraspecific as well as interspecific interaction and signaling. The rhizomicrobiome, as biostimulants, play a pivotal role in stimulating the growth of plants and providing resilience against abiotic stress. Such rhizobacteria which promote the development of plants and increase their yield and immunity are known as PGPR (plant growth promoting rhizobacteria). On the basis of contact, they are classified into two categories, extracellular (in soil around root, root surface and cellular space) and intracellular (nitrogen-fixing bacteria). They show their effects on plant growth directly (i.e., in absence of pathogens) or indirectly. Generally, they make their niche in concentrated form around roots, as the latter exude several nutrients, such as amino acids, lipids, proteins, etc. Rhizobacteria build a special symbiotic relationship with the plant or a section of the plant�s inner tissues. There are free-living PGPRs with the potential to work as biofertilizers. Additionally, studies show that PGPRs can ameliorate the effect of abiotic stresses and help in enhanced growth and development of plants producing therapeutically important compounds. This review focuses on the various mechanisms which are employed by PGPRs to mitigate the effect of different stresses in medicinal plants and enhance tolerance against these stress conditions. � 2022 by the authors.Item Endophytes as nature's gift to plants to combat abiotic stresses(Oxford University Press, 2022-12-20T00:00:00) Godara, Himanshi; Ramakrishna, WusirikaIn recent decades, scientists have recognized that plants' distinct and immensely dynamic microbial communities are more than just "passengers,"but instead, play an important role in their development, and shielding against abiotic and biotic stresses. Endophytes comprise fungi and bacteria that live within plant tissues and support growth when plants are under stress. All plants in nature are considered to have symbiotic association with endophytes. A comprehensive review of the accessible data suggests that mobility, cell-wall degradation capacity, and reactive oxygen species scavenging are critical attributes for the successful colonization of endophytes. Plants encounter several abiotic stresses caused by climate change and global warming, which have an effect on their growth and production. Abiotic stress like high temperature, salinity, and high precipitation can severely affect plants compared to biotic stress. This review aims to highlight what role endophytes play to aid plant growth under abiotic stress conditions like heat, salinity, and drought. In the current review, we discuss how endophytic microbes can be efficiently used for the improvement and promotion of plant growth and crop production under abiotic stress conditions. � 2022 The Author(s). Published by Oxford University Press on behalf of Applied Microbiology International.