School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
3 results
Search Results
Item Galangin: A metabolite that suppresses anti-neoplastic activities through modulation of oncogenic targets(SAGE Publications Inc., 2021-12-14T00:00:00) Tuli, Hardeep Singh; Sak, Katrin; Adhikary, Shubham; Kaur, Ginpreet; Aggarwal, Diwakar; Kaur, Jagjit; Kumar, Manoj; Parashar, Nidarshana Chaturvedi; Parashar, Gaurav; Sharma, Uttam; Jain, AklankWith the dramatic increase in cancer incidence all over the world in the last decades, studies on identifying novel efficient anti-cancer agents have been intensified. Historically, natural products have represented one of the most important sources of new lead compounds with a wide range of biological activities. In this article, the multifaceted anti-cancer action of propolis-derived flavonoid, galangin, is presented, discussing its antioxidant, anti-inflammatory, antiproliferative, pro-apoptotic, anti-angiogenic, and anti-metastatic effects in various cancer cells. In addition, co-effects with standard chemotherapeutic drugs as well as other natural compounds are also under discussion, besides highlighting modern nanotechnological advancements for overcoming the low bioavailability issue characteristic of galangin. Although further studies are needed for confirming the anti-cancer potential of galangin in vivo malignant systems, exploring this natural compound might open new perspectives in molecular oncology. � 2021 by the Society for Experimental Biology and Medicine.Item Synthesis and in-silico Studies of 4-phenyl Thiazol-2-amine Derivatives as Putative Anti-breast Cancer Agents(Bentham Science Publishers, 2023-03-22T00:00:00) Lavanya, Kanamarlapudi Joshna; Kaur, Kamalpreet; Jaitak, VikasBackground: Breast cancer (BC) is the second-leading cause of cancer-related fatalities in women after lung cancer worldwide. The development of BC is significantly influenced by estrogen receptors (ERs). The problem with current cancer treatments is selectivity, target specificity, cytotoxicity, and developing resistance. Thiazole scaffolds are gaining popularity in drug discovery due to their broad range of biological activity. It has the extraordinary capacity to control a variety of cellular pathways, and its potential for selective anticancer activity can be explored. Objective: Synthesis and in-silico studies of 4-Phenyl thiazol-2-amine derivatives as anti-breast cancer agents and molecular docking was used to assess the compounds� capacity to bind ER-? protein target. Methods: In this study, 4-Phenylthiazol-2-amine derivatives (3a-j) have been synthesized, and using Schrodinger software, molecular docking and ADME studies of the compounds were conducted. Results: Most of the synthesized compounds have shown dock scores ranging from-6.658 to 8.911 kcal/mol, which is better than the standard drug tamoxifen (-6.821 kcal/mol). According to molecular docking, all compounds fit in the protein�s active site and have the same hydrophobic pocket as the standard drug tamoxifen. Further, all of the compounds� ADME properties are below acceptable limits. Conclusion: Compound 3e showed the best docking score of-8.911. All compounds� ADME properties are within acceptable limits, and their p/o coefficients fall within a range, suggesting they will all have sufficient absorption at the site of action. These compounds can be evaluated invitro and in-vivo in the future. � 2024 Bentham Science Publishers.Item Nitrogen Containing Heterocycles as Anticancer Agents: A Medicinal Chemistry Perspective(MDPI, 2023-02-15T00:00:00) Kumar, Adarsh; Singh, Ankit Kumar; Singh, Harshwardhan; Vijayan, Veena; Kumar, Deepak; Naik, Jashwanth; Thareja, Suresh; Yadav, Jagat Pal; Pathak, Prateek; Grishina, Maria; Verma, Amita; Khalilullah, Habibullah; Jaremko, Mariusz; Emwas, Abdul-Hamid; Kumar, PradeepCancer is one of the major healthcare challenges across the globe. Several anticancer drugs are available on the market but they either lack specificity or have poor safety, severe side effects, and suffer from resistance. So, there is a dire need to develop safer and target-specific anticancer drugs. More than 85% of all physiologically active pharmaceuticals are heterocycles or contain at least one heteroatom. Nitrogen heterocycles constituting the most common heterocyclic framework. In this study, we have compiled the FDA approved heterocyclic drugs with nitrogen atoms and their pharmacological properties. Moreover, we have reported nitrogen containing heterocycles, including pyrimidine, quinolone, carbazole, pyridine, imidazole, benzimidazole, triazole, ?-lactam, indole, pyrazole, quinazoline, quinoxaline, isatin, pyrrolo-benzodiazepines, and pyrido[2,3-d]pyrimidines, which are used in the treatment of different types of cancer, concurrently covering the biochemical mechanisms of action and cellular targets. � 2023 by the authors.