School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
3 results
Search Results
Item A critical review on orthosilicate Li2MSiO4 (M = Fe, Mn) electrode materials for Li ion batteries(Institute of Physics, 2023-05-10T00:00:00) Pateriya, Ravi Vikash; Tanwar, Shweta; Sharma, A.L.The development of novel electrode materials with good electrochemical performances is necessary for the expanded and varied applications of lithium-ion batteries, and this development heavily relies on cathode materials. Due to excellent thermal stability, abundance, low cost, and environmental friendliness, orthosilicate cathode materials Li2MSiO4 (M = Fe, Mn) has received a lot of attention recently. The present review article gives a glimpse into the characteristics, advantages, and recent progress of orthosilicate cathode materials. This review starts with a brief history and working mechanism of batteries, the advantages of cathode materials followed by types of cathode materials, various synthesis methods, and different techniques used for their characterization. The most current initiatives to enhance orthosilicate Li2MSiO4 type electrochemical performances were introduced in this review. We provide a critical assessment of the efficient modification techniques for the orthosilicate Li2MSiO4 type cathode materials in particular. These potential cathode materials� synthesis, structure, morphologies, and particularly electrochemical performances have been thoroughly examined. This evaluation, we hope, will clarify the sustained advancement of high-efficiency and reasonably priced Li-ion batteries. � 2023 IOP Publishing Ltd.Item Synergistically modified WS2@PANI binary nanocomposite-based all-solid-state symmetric supercapacitor with high energy density(Royal Society of Chemistry, 2022-03-09T00:00:00) Iqbal, Muzahir; Saykar, Nilesh G.; Alegaonkar, Prashant S.; Mahapatra, Santosh K.The rapid development of intelligent, wearable, compact electronic equipment has triggered the need for durable, flexible, and lightweight portable energy storage devices. Nanomaterials that are capable of delivering the high specific power density and commensurate energy density are potential candidate for realizing such devices. Herein, we report the facile synthesis of a binary nanocomposite WS2@PANI by utilizing hydrothermal and physical blending techniques to assess it as an electrode material for high-performance supercapacitors. The nanocomposite electrode delivered specific capacitance >335 F g?1 @ 10 mV s?1 (two-electrode), achieving energy and power densities of ?80 W h kg?1 and ?800 W kg?1, respectively, with capacitance retention of 83% even after 5000 charge-discharge cycles @ 10 A g?1, all of which are superior to the WS2 electrode. Dunns model quantifies capacitive and intercalative contributions that showed the cumulative effect of both to realize a robust, cost-effective, and energy-efficient device. The strategically incorporated PANI broadened the electrochemical window and the device's overall performance, resulting in high specific energy density. We demonstrated that our all-solid-state symmetric supercapacitor could be used to illuminate a light-emitting diode and drive a rotary motor. We believe that our WS2@PANI binary nanocomposite will be a potential candidate for energy storage devices. � 2022 The Royal Society of ChemistryItem Green synthesis of hybrid papain/Ni3(PO4)2 rods electrocatalyst for enhanced oxygen evolution reaction(Royal Society of Chemistry, 2022-10-21T00:00:00) Ahmed, Imtiaz; Biswas, Rathindranath; Singh, Harjinder; Patil, Ranjit A.; Varshney, Rohit; Patra, Debabrata; Ma, Yuan-Ron; Haldar, Krishna KantaHydrogen production using electrocatalytic water splitting provides encouraging innovations for enduring and clean energy generation as an option in contrast to traditional energy sources. Improvement in exceptionally dynamic electrocatalysts is of tremendous interest for work on the proficiency of gas generation, which has been emphatically blocked because of the sluggish kinetics of the oxygen evolution reaction (OER). We have synthesized a noble rod-shaped papain/Ni3(PO4)2 catalyst, which was further explored for electrocatalytic OER activity. An environmentally benign approach was applied to prepare binary papain/Ni3(PO4)2 in the presence of papain obtained from green papaya fruit. The yield of Ni3(PO4)2 rod structures could be controlled by varying the amount of papain extract during reaction conditions. The morphology and structural properties of the biogenic papain/Ni3(PO4)2 electrocatalyst were investigated with various microscopic and spectroscopic techniques, for example, FE-SEM, XRD, XPS, and FTIR. To show how such a papain/Ni3(PO4)2 hybrid structure could deliver more remarkable electrocatalytic OER activity, we inspected the correlation between catalytic demonstrations of the papain/Ni3(PO4)2 catalyst and its constituents, and the role of papain on its own was studied during the OER process. A biosynthesised papain/Ni3(PO4)2 catalyst exhibits excellent electrochemical OER performance with the smallest overpotentials of 217 mV, 319 mV and 431 mV in alkaline, neutral and acidic conditions, respectively, at 10 mA cm?2 current density. Transport of ions and electrons is also assisted by the long peptide backbone present in papain, which plays an important role in boosting OER activity. Our results reveal that papain/Ni3(PO4)2 shows better electrocatalytic OER execution along with cyclic stability compared to its different counterparts, owing to synergism-assisted enhancement by several amino acids from papain with metal ions in Ni3(PO4)2 � 2022 The Royal Society of Chemistry.