School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Soil Microbiome: Diversity, Benefits and Interactions with Plants
    (Multidisciplinary Digital Publishing Institute (MDPI), 2023-10-09T00:00:00) Chauhan, Poonam; Sharma, Neha; Tapwal, Ashwani; Kumar, Ajay; Verma, Gaurav Swaroop; Meena, Mukesh; Seth, Chandra Shekhar; Swapnil, Prashant
    Plant roots aid the growth and functions of several kinds of microorganisms such as plant growth-promoting rhizobacteria, mycorrhizal fungi, endophytic bacteria, actinomycetes, nematodes, protozoans which may impart significant impacts on plant health and growth. Plant soil�microbe interaction is an intricate, continuous, and dynamic process that occurs in a distinct zone known as the rhizosphere. Plants interact with these soil microbes in a variety of ways, including competitive, exploitative, neutral, commensal, and symbiotic relationships. Both plant and soil types were found to have an impact on the community diversity and structure of the rhizosphere, or vice versa. The diversity of microorganisms in soil is thought to be essential for the management of soil health and quality because it has different plant growth-promoting or biocontrol effects that could be very advantageous for the host plant and alter plant physiology and nutrition. The composition of microbial community is influenced by soil and plant type. Besides these beneficial microbes, the soil also harbors microorganisms that are detrimental to plants, competing for nutrients and space, and causing diseases. Numerous microorganisms have antagonistic activity and the ability to defend plants from soil-borne diseases. The study of the soil microbiome is essential for formulating strategies for transforming the rhizosphere to the benefit of the plants. This review pays special emphasis on the types of microbial populations in the soil and how they influence plant growth, nutrient acquisition, inter-relationships between soil microbes and plants, stress resistance, carbon sequestration, and phytoremediation. � 2023 by the authors.
  • Item
    Soil Microbiome: Diversity, Benefits and Interactions with Plants
    (Multidisciplinary Digital Publishing Institute (MDPI), 2023-10-09T00:00:00) Chauhan, Poonam; Sharma, Neha; Tapwal, Ashwani; Kumar, Ajay; Verma, Gaurav Swaroop; Meena, Mukesh; Seth, Chandra Shekhar; Swapnil, Prashant
    Plant roots aid the growth and functions of several kinds of microorganisms such as plant growth-promoting rhizobacteria, mycorrhizal fungi, endophytic bacteria, actinomycetes, nematodes, protozoans which may impart significant impacts on plant health and growth. Plant soil�microbe interaction is an intricate, continuous, and dynamic process that occurs in a distinct zone known as the rhizosphere. Plants interact with these soil microbes in a variety of ways, including competitive, exploitative, neutral, commensal, and symbiotic relationships. Both plant and soil types were found to have an impact on the community diversity and structure of the rhizosphere, or vice versa. The diversity of microorganisms in soil is thought to be essential for the management of soil health and quality because it has different plant growth-promoting or biocontrol effects that could be very advantageous for the host plant and alter plant physiology and nutrition. The composition of microbial community is influenced by soil and plant type. Besides these beneficial microbes, the soil also harbors microorganisms that are detrimental to plants, competing for nutrients and space, and causing diseases. Numerous microorganisms have antagonistic activity and the ability to defend plants from soil-borne diseases. The study of the soil microbiome is essential for formulating strategies for transforming the rhizosphere to the benefit of the plants. This review pays special emphasis on the types of microbial populations in the soil and how they influence plant growth, nutrient acquisition, inter-relationships between soil microbes and plants, stress resistance, carbon sequestration, and phytoremediation. � 2023 by the authors.
  • Item
    Endophytes as nature's gift to plants to combat abiotic stresses
    (Oxford University Press, 2022-12-20T00:00:00) Godara, Himanshi; Ramakrishna, Wusirika
    In recent decades, scientists have recognized that plants' distinct and immensely dynamic microbial communities are more than just "passengers,"but instead, play an important role in their development, and shielding against abiotic and biotic stresses. Endophytes comprise fungi and bacteria that live within plant tissues and support growth when plants are under stress. All plants in nature are considered to have symbiotic association with endophytes. A comprehensive review of the accessible data suggests that mobility, cell-wall degradation capacity, and reactive oxygen species scavenging are critical attributes for the successful colonization of endophytes. Plants encounter several abiotic stresses caused by climate change and global warming, which have an effect on their growth and production. Abiotic stress like high temperature, salinity, and high precipitation can severely affect plants compared to biotic stress. This review aims to highlight what role endophytes play to aid plant growth under abiotic stress conditions like heat, salinity, and drought. In the current review, we discuss how endophytic microbes can be efficiently used for the improvement and promotion of plant growth and crop production under abiotic stress conditions. � 2022 The Author(s). Published by Oxford University Press on behalf of Applied Microbiology International.