School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
4 results
Search Results
Item Identification of terpenoids as dihydropteroate synthase and dihydrofolate reductase inhibitors through structure-based virtual screening and molecular dynamic simulations(Taylor and Francis Ltd., 2023-05-13T00:00:00) Saini, Abhishek; Kumar, Amit; Jangid, Kailash; Kumar, Vinod; Jaitak, VikasBacterial infections are rising, and antimicrobial resistance (AMR) in bacteria has worsened the scenario, requiring extensive research to find alternative therapeutic agents. Terpenoids play an essential role in protecting plants from herbivores and pathogens. The present study was designed to focus on in silico evaluation of terpenoids for their affinity towards two necessary enzymes, i.e. DHFR and DHPS, which are involved in forming 5, 6, 7, 8-tetrahydrofolate, a key component in bacterial DNA synthesis proteins. Additionally, to account for activity against resistant bacteria, their affinity towards the L28R mutant of DHFR was also assessed in the study. The structure-based drug design approach was used to screen the compound library of terpenes for their interaction with active sites of DHFR and DHPS. Further, compounds were screened based on their dock score, pharmacokinetic properties, and binding affinities. A total of five compounds for each target protein were screened, having dock scores better than their respective standard drug molecules. CNP0169378 (?8.4 kcal/mol) and CNP0309455 (?6.5 kcal/mol) have been identified as molecules with a higher affinity toward the targets of DHFR and DHPS, respectively. At the same time, one molecule CNP0298407 (?5.8 kcal/mol for DHPS, ?7.6 kcal/mol for DHFR, ?6.1 kcal/mol for the L28R variant), has affinity for both proteins (6XG5 and 6XG4). All the molecules have good pharmacokinetic properties. We further validated the docking study by binding free energy calculations using the MM/GBSA approach and molecular dynamics simulations. Communicated by Ramaswamy H. Sarma. � 2023 Informa UK Limited, trading as Taylor & Francis Group.Item Structure-based Virtual Screening and Molecular Dynamic Simulation Approach for the Identification of Terpenoids as Potential DPP-4 Inhibitors(Bentham Science Publishers, 2023-05-16T00:00:00) Pulikkottil, Ajay Aravind; Kumar, Amit; Jangid, Kailash; Kumar, Vinod; Jaitak, VikasBackground: Diabetes mellitus is a metabolic disorder where insulin secretion is compromised, leading to hyperglycemia. DPP-4 is a viable and safer target for type 2 diabetes mellitus. Computational tools have proven to be an asset in the process of drug discovery. Objective: In the present study, tools like structure-based virtual screening, MM/GBSA, and pharmacokinetic parameters were used to identify natural terpenoids as potential DPP-4 inhibitors for treating diabetes mellitus. Methods: Structure-based virtual screening, a cumulative mode of elimination technique, was adopted, identifying the top five potent hit compounds depending on the docking score and nonbonding interactions. Results: According to the docking data, the most important contributors to complex stability are hydrogen bonding, hydrophobic interactions, and Pi-Pi stacking interactions. The dock scores ranged from-6.492 to-5.484 kcal/mol, indicating robust ligand-protein interactions. The pharmacokinetic characteristics of top-scoring hits (CNP0309455, CNP0196061, CNP0122006, CNP0 221869, CNP0297378) were also computed in this study, confirming their safe administration in the human body. Also, based on the synthetic accessibility score, all top-scored hits are easily synthesizable. Compound CNP0309455 was quite stable during molecular dynamic simulation studies. Conclusion: Virtual database screening yielded new leads for developing DPP-4 inhibitors. As a result, the findings of this study can be used to design and develop natural terpenoids as DPP-4 inhibitors for the medication of diabetes mellitus. � 2024 Bentham Science Publishers.Item Discovery of plant-based phytochemical�as effective antivirals that target the non-structural protein C of the Nipah virus through computational methods(Taylor and Francis Ltd., 2023-05-24T00:00:00) Sureshan, Muthusamy; Prabhu, Dhamodharan; Joshua, Sharon Nissi; Sasikumar, Shruti Vardhini; Rajamanikandan, Sundarraj; Govindhapriya, Muthukumar; Umadevi, Venkatachalam; Kadhirvel, SarabojiNipah Virus (NiV) belongs to the Paramyxoviridae family and was first identified during an outbreak in Malaysia. Some initial symptoms include mild fever, headache and sore throat, which could escalate to respiratory illness and brain inflammation. The mortality rate of NiV infection can range from 40% to 75%, which is quite high. This is mainly due to the lack of efficient drugs and vaccines. In most instances, NiV is transmitted from animals to humans. Non-Structural Proteins (C, V and W) of the Nipah virus impede the host immune response by obstructive the JAK/STAT pathway. However, Non-Structural Proteins�C (NSP-C) plays a vital role in NiV pathogenesis, which includes IFN antagonist activity and viral RNA production. In the present study, the full-length structure of NiV-NSP-C was predicted using computational modelling, and the stability of the structure was analysed using 200 ns molecular dynamic (MD) simulation. Further, the structure-based virtual screening identified five potent phytochemicals (PubChem CID: 9896047, 5885, 117678, 14887603 and 5461026) with better binding affinity against NiV-NSP-C. DFT studies clearly showed that the phytochemicals had higher chemical reactivity, and the complex MD simulation depicted that the identified inhibitors exhibited stable binding with NiV-NSP-C. Furthermore, experimental validation of these identified phytochemicals would likely control the infection of NiV. Communicated by Ramaswamy H. Sarma. � 2023 Informa UK Limited, trading as Taylor & Francis Group.Item Computational identification and experimental validation of anti-filarial lead molecules targeting metal binding/substrate channel residues of Cu/Zn SOD1 from Wuchereria bancrofti(Taylor and Francis Ltd., 2022-10-28T00:00:00) Sureshan, Muthusamy; Prabhu, Dhamodharan; Kadhirvel, SarabojiLymphatic filariasis (LF) is a neglected mosquito-borne parasitic disease, widely caused by Wuchereria bancrofti (Wb) in tropical and sub-tropical countries. During a blood meal, the filarial nematodes are transmitted to humans by the infected mosquito. To counter attack the invaded nematodes, the human immune system produces reactive oxygen species. However, the anti-oxidant enzymes of nematodes counteract the host oxidative cytotoxicity. Cu/Zn Superoxide dismutase (SOD1), a member of antioxidant enzymes and are widely used by the nematodes to sustain the host oxidative stress across its lifecycle, hence targeting SOD1 to develop suitable drug molecules would help to overcome the problems related to efficacy and activity of drugs upon different stages of nematodes. In order to find the potent inhibitors, a three-dimensional structure of Cu/Zn WbSOD1 was modelled and the structural stability was analysed through simulation studies. The structure-guided virtual screening approach has been used to identify lead molecules from the ChemBridge based on the docking score, ADMET properties and protein�ligand complex stability analysis. The identified compounds were observed to interact with the copper, metal binding residues (His48, His63, His80 and His120) and catalytically important residue Arg146, which play a crucial role in the disproportionation of incoming superoxide radicals of Cu/Zn WbSOD1. Further, in�vitro validation of the selected leads in the filarial worm Setaria digitata exhibited higher inhibition and better IC50 compared to the standard drug ivermectin. Thus, the identified leads could potentially inhibit enzyme activity, which could subsequently act as drug candidates to control LF. Communicated by Ramaswamy H. Sarma. � 2022 Informa UK Limited, trading as Taylor & Francis Group.