School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
3 results
Search Results
Item 2D layered transition metal dichalcogenides (MoS2): Synthesis, applications and theoretical aspects(Elsevier, 2018) Singh, Arun Kumar; Kumar, P.; Late, D.J.; Kumar, Ashok; Patel, S.; Singh, JaiRecently, graphene and other two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been widely explored due to their unique optical, mechanical, electrical and sensing properties for versatile electronic and optoelectronic applications. The atomically thin layers of TMDC materials have shown potential to replace state-of-the-art silicon-based technology. Graphene has already revealed an excess of new physics and multifaceted applications in several areas. Similarly, mono-layers of TMDCs such as molybdenum disulfide (MoS2) have also shown excellent electrical and optical properties possessing a direct band-gap of ∼1.8 eV combined with high mechanical flexibility. In contrast to semi-metallic graphene, the semiconducting behavior of MoS2 allows it to overcome the deficiencies of zero-band-gap graphene. This review summarizes the synthesis of 2D MoS2 by several techniques, i.e., mechanical and chemical exfoliation, RF-sputtering, atomic layer deposition (ALD) and chemical vapor deposition (CVD), etc. Furthermore, extensive studies based on potential applications of MoS2 such as the sensor, solar cells, field emission and as an efficient catalyst for hydrogen generation has been included. Theoretical aspects combined with the experimental observations to provide more insights on the dielectric, optical and topological behavior of MoS2 was highlighted.Item 2D layered transition metal dichalcogenides (MoS2): Synthesis, applications and theoretical aspects(Elsevier Ltd, 2018) Singh, Arun Kumar; Kumar, P.; Late, D.J.; Kumar, Ashok; Patel, S.; Singh, JaiRecently, graphene and other two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been widely explored due to their unique optical, mechanical, electrical and sensing properties for versatile electronic and optoelectronic applications. The atomically thin layers of TMDC materials have shown potential to replace state-of-the-art silicon-based technology. Graphene has already revealed an excess of new physics and multifaceted applications in several areas. Similarly, mono-layers of TMDCs such as molybdenum disulfide (MoS2) have also shown excellent electrical and optical properties possessing a direct band-gap of ?1.8 eV combined with high mechanical flexibility. In contrast to semi-metallic graphene, the semiconducting behavior of MoS2 allows it to overcome the deficiencies of zero-band-gap graphene. This review summarizes the synthesis of 2D MoS2 by several techniques, i.e., mechanical and chemical exfoliation, RF-sputtering, atomic layer deposition (ALD) and chemical vapor deposition (CVD), etc. Furthermore, extensive studies based on potential applications of MoS2 such as the sensor, solar cells, field emission and as an efficient catalyst for hydrogen generation has been included. Theoretical aspects combined with the experimental observations to provide more insights on the dielectric, optical and topological behavior of MoS2 was highlighted.Item Promising field electron emission performance of vertically aligned one dimensional (1D) brookite (?) TiO2 nanorods(Royal Society of Chemistry, 2016) Devan, R.S.; Ma, Y.-R.; More, M.A.; Khare, R.T.; Antad, V.V.; Patil, R.A.; Thakare, V.P.; Dhayal, R.S.; Schmidt-Mende, L.We evidence field-electron emission (FE) studies on the large-area array of one-dimensional (1D) brookite (?) TiO2 nanorods. The pure 1D ?-TiO2 nanorods of 10 nm width and 760 nm long were synthesized on Si substrate utilizing hot-filament metal vapor deposition technique. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis evidenced the ?-TiO2 nanorods to be composed of orthorhombic crystals in brookite (?) phase. X-ray photoemission spectroscopy (XPS) revealed the formation of pure stoichiometric (i.e. 1 : 1.98) 1D TiO2 nanorods. The values of turn-on field, required to draw current density of 10 ?A cm-2, was observed 3.9 V ?m-1 for pristine 1D ?-TiO2 nanorods emitters, which were found significantly lower than doped/undoped 1D TiO2 nanostructures (i.e. nanotubes, nanowires, nanorods) based field emitters. The enhanced FE behavior of the TiO2/Si emitter can be attributed to modulation of electronic properties due to the high aspect ratio of vertically aligned TiO2 nanorods. Furthermore, the orthodox emission situation of pristine TiO2/Si emitters exhibit good emission stability and reveal their potentials as promising FE material. ? 2016 The Royal Society of Chemistry.