School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
3 results
Search Results
Item Promising field electron emission performance of vertically aligned one dimensional (1D) brookite (?) TiO2 nanorods(Royal Society of Chemistry, 2016) Devan, R.S.; Ma, Y.-R.; More, M.A.; Khare, R.T.; Antad, V.V.; Patil, R.A.; Thakare, V.P.; Dhayal, R.S.; Schmidt-Mende, L.We evidence field-electron emission (FE) studies on the large-area array of one-dimensional (1D) brookite (?) TiO2 nanorods. The pure 1D ?-TiO2 nanorods of 10 nm width and 760 nm long were synthesized on Si substrate utilizing hot-filament metal vapor deposition technique. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis evidenced the ?-TiO2 nanorods to be composed of orthorhombic crystals in brookite (?) phase. X-ray photoemission spectroscopy (XPS) revealed the formation of pure stoichiometric (i.e. 1 : 1.98) 1D TiO2 nanorods. The values of turn-on field, required to draw current density of 10 ?A cm-2, was observed 3.9 V ?m-1 for pristine 1D ?-TiO2 nanorods emitters, which were found significantly lower than doped/undoped 1D TiO2 nanostructures (i.e. nanotubes, nanowires, nanorods) based field emitters. The enhanced FE behavior of the TiO2/Si emitter can be attributed to modulation of electronic properties due to the high aspect ratio of vertically aligned TiO2 nanorods. Furthermore, the orthodox emission situation of pristine TiO2/Si emitters exhibit good emission stability and reveal their potentials as promising FE material. ? 2016 The Royal Society of Chemistry.Item Nickel oxide decorated zinc oxide composite nanorods: Excellent catalyst for photoreduction of hexavalent chromium(Academic Press Inc., 2018) Singh, Simranjeet; Ahmed,Imtiaz; Haldar, Krishna KantaIn light of the growing interest and ability to search for new materials, we have synthesized Nickel oxide (NiO) nanoparticles decorated Zinc (ZnO) nanorods composite (NiO/ZnO) nanostructure. The NiO/ZnO heterostructure formation was confirmed by X-ray powder diffraction and high-resolution transmission electron microscopy (HRTEM). The fabricated environmental friendly NiO/ZnO composite nanostructure shows a well-defined photoreduction characteristic of hexavalent Chromium (Cr) (VI) to tri-valent Chromium (Cr) (III) under UV-light. Such an enhanced photoreduction property is attributed due to the decreased electron-hole recombination process which was proved by photoluminescence (PL) spectroscopy, photocurrent study, and electrochemical impedance spectroscopy. Furthermore, the photocatalytic activity rate of the NiO decorated ZnO nanorods was much higher than that of bare ZnO nanorods for the reduction of chromium (VI) and the rate is found to be 0.306 min?1. These results have demonstrates that suitable surface engineering may open up new opportunities in the development of high-performance photocatalyst. ? 2018 Elsevier Inc.Item Amino acid functionalized zinc oxide nanostructures for cytotoxicity effect and hemolytic behavior: Theoretical and experimental studies(Elsevier Ltd, 2017) Singh, Satvinder; Singh, Baljinder; Sharma, Prateek; Mittal, Anu; Kumar, Sanjeev; Saini, G.S.S.; Tripathi, S.K.; Singh, Gurinder; Kaura, AmanBlending of theoretical and experimental approach, provide an important strategy in designing the nanostructure at a microscopic level and helps in predicting the response of synthesized material towards inhibition of the growth of breast cancer cell. In this work, ab initio calculations using super cell approach are performed for three different amino acids (AAs)-Histidine (His), Arginine (Arg) and Aspartic acid (Asp) coated Zinc oxide (ZnO) nanostructures to explain the growth mechanism of nanoparticles (NPs) of different shapes. Based on the first principles calculations, we reveal that ZnO-AA (Arg and Asp) NPs results in rod like and ZnO-His NPs lead to tablet like configuration. Similar morphologies are fabricated using AAs through synthetic route. The effect of concentration ratio of reactants and pH has been studied. As synthesized samples, are characterized by using Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) and UV?Vis spectroscopy techniques. Based on the results, a plausible mechanism of formation of nanostructures has been proposed. The nanostructures with rod like morphology are found to be biocompatible with normal red blood cells and show cytotoxic effect as evaluated from hemolysis and cytotoxicity assays on breast (MCF-7, T47D, MDA-MB-231) & prostate cancer (PC-3) cell lines. ? 2017 Elsevier Ltd