School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Optical properties of nanocrystallite films of ?-Fe2O3 and ?-Fe2-xCrxO3 (0.0 ? x ? 0.9) deposited on glass substrates
    (Institute of Physics Publishing, 2017) Kumar, Ajay; Yadav, Kamlesh
    ?-Fe2O3 films are deposited on fluorine-doped tin oxide (FTO) and indium-doped tin oxide (ITO) substrates for 1, 4 and 6 min using a spray pyrolysis technique. We also deposited ?-Fe2-xCrxO3 (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.7 and 0.9) films on the FTO substrate for a deposition time of 35 s. The structural and optical properties of these films were then studied. The x-ray diffraction (XRD) patterns show that all the films are crystalline in nature with a hexagonal crystal structure. The average grain size and unit cell volume were calculated using XRD data. It is found that the average grain size and unit cell volume increase with an increasing film thickness and Cr-doping concentration. The value of strain decreases with an increasing film thickness and Cr-doping content. It is also found that films with the same deposition time on the ITO substrate are more crystalline than on the FTO substrate. Furthermore, the average grain size is obtained from field emission scanning electron microscopy (FESEM) images. FESEM analysis confirms that the average grain size increases with the film thickness and Cr-doping concentration. The optical absorption spectra of the films show that the absorbance increases with an increasing deposition time and Cr concentration. The energy band gap (Eg) of all the films has been calculated using Tauc's relation. A narrowing of the band gap was observed with an increase in film thickness and Cr-doping content. The reduction of the band gap with the increase in film thickness of the films deposited on the ITO substrate is larger than for the film deposited on the FTO substrate. The refractive index is also obtained from the absorption spectra of the films using the Moss relation: n = 4 (k/Eg), where k =108 eV. The refractive index decreases with an increase in the optical band gap. The band gaps of the films are also calculated from the FTIR spectra. This is in good agreement with the UV data. The correlation between the structural and optical properties of the deposited films has been discussed.
  • Thumbnail Image
    Item
    Identifying the preferred interaction mode of naringin with gold nanoparticles through experimental, DFT and TDDFT techniques: Insights into their sensing and biological applications
    (Royal Society of Chemistry, 2016) Singh, Baljinder; Rani, Monika; Singh, Janpreet; Moudgil, Lovika; Sharma, Prateek; Kumar, Sanjeev; Saini, G.S.S.; Tripathi, S.K.; Singh, Gurinder; Kaura, Aman
    In this work, the binding behaviour of naringin-a flavonoid with AuNPs is explained by combining experimental and theoretical approaches. We have systematically analysed the effect of temperature and concentration of naringin and gold (Au) in the formation of naringin stabilized Au nanoparticles (N-AuNPs). The interaction of naringin with gold nanoparticles (AuNPs) is investigated by various techniques such as UV-visible spectroscopy, TEM, FT-IR, XRD and gel electrophoresis. These studies indicate that naringin acts as a reducing and stabilizing agent. Further, we have modelled the two side chains of naringin with the functional groups [C10H7O2] and [C6H5O]-, and identified the lowest energy configurations of these groups with AuNPs with the help of density functional theory (DFT). The [C10H7O2]-Au13 has higher binding energy than [C6H5O]--Au13 and it is attributed to delocalized molecular orbitals in [C10H7O2], hence higher charge transfer to the Au13 cluster. On the basis of the resulting structures, we examine the optical properties using time-dependent density functional theory (TDDFT). We observe significant changes in the optical spectra of the representative structures of side chains with the AuNPs. The peak in the spectra of the Vis region of [C10H7O2]-Au13 undergoes a shift towards lower wavelength in comparison to [C6H5O]--Au13. Natural transition orbitals (NTOs) of hole and particle states of the [C10H7O2]-Au13 conjugate system are localized on [C10H7O2] and Au13, respectively, whereas for the [C6H5O]--Au13 both hole and particle states are localized on the Au13 cluster. These N-AuNPs show their applicability as a sensor for detecting aluminium ions (Al3+) in aqueous solution. These NPs are also found to be biocompatible with normal red blood cells and MDAMB-231 breast carcinoma cell lines, as evaluated from hemolysis and cytotoxicity assays. Thus, naringin offers non-toxic and bio friendly N-AuNPs, which are considered to be the best vehicle for drug release and other possible biomedical and sensing applications. ? 2016 The Royal Society of Chemistry.