School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
12 results
Search Results
Item Investigation of Indole-3-piperazinyl Derivatives as Potential Antidepressants: Design, Synthesis, In-Vitro, In-Vivo and In-Silico Analysis(John Wiley and Sons Inc, 2021-11-03T00:00:00) Kumar, Ravi R.; Kumar, Vijay; Kaur, Dilpreet; Nandi, Nilay K.; Dwivedi, Ashish R.; Kumar, Vinod; Kumar, BhupinderDepression is declared the second leading cause of disability worldwide. Recently, cases of depression have increased significantly in adolescents, young adults as well as in elder population. Monoamine oxidase-A (MAO-A) is considered one of the major targets for the treatment of depression. In the current study, we have designed and synthesized various indole functionalized piperazinyl derivatives and evaluated them for in vitro MAO-A inhibitory activity and in vivo antidepressant-like activity. Most of the compounds were found to possess potent MAO-A inhibitory activity with IC50 values in the sub-micromolar range along with significant selectivity over MAO-B. Compounds RP1 and RP9 emerged as the most promising reversible MAO-A inhibitors with IC50 values of 0.11�0.03 ?M and 0.14�0.02 ?M and displayed selectivity of 193 folds and 178 folds over Monoamine oxidase-B (MAO-B), respectively. In the series, RP1 showed good intracellular ROS inhibitory activity along with neuroprotective properties. These compounds were found nontoxic against SH-SY5Y cells and explored antidepressant activities. In the in vivo Forced swimming test (FST) and Tail suspension test (TST) studies, RP1 exhibited potential antidepressant-like behavior similar to standard drug fluoxetine while compound RP9 showed antidepressant-like activity only in the TST studies. The molecular docking and dynamics studies further supported the results obtained in the in vitro and in vivo studies. Thus, the indole functionalized piperazinyl derivatives were found to be promising ligands and can be developed as new antidepressant molecules. � 2021 Wiley-VCH GmbHItem A review on phytotoxicity and defense mechanism of silver nanoparticles (AgNPs) on plants(Springer Science and Business Media B.V., 2023-03-16T00:00:00) Kumar, Sumit; Masurkar, Prahlad; Sravani, Bana; Bag, Dipanjali; Sharma, Kamal Ravi; Singh, Prashant; Korra, Tulasi; Meena, Mukesh; Swapnil, Prashant; Rajput, Vishnu D.; Minkina, TatianaSilver nanoparticles (AgNPs) are noteworthy used nanomaterials in a wide array of fields, particularly in the agricultural sector. Plants play a multifarious role in the ecosystem and provide a source of food for mankind. The responsibility of the scientific community is to recognize the deleterious impact of AgNPs (1�100�nm in size) on critical crop growth and development of plants, which is required for the assessment of environmental threats to plant, human, and animal health. The continued use of AgNPs in agriculture areas may have negative effects on plant biochemical and physiological responses. The current context focused mainly on AgNPs uptake, transport, and accumulation on crop plants and summarizes different levels of phytotoxicity of AgNPs on plant functions and focused on mechanisms of phytotoxicity employed by AgNPs. Moreover, some tolerance mechanisms and various survival strategies developed by plants under AgNPs toxicity are discussed. This background provides comprehensive information necessary to facilitate profound understanding of the toxic impacts of AgNPs on crop plants. � 2023, The Author(s), under exclusive licence to Springer Nature B.V.Item A review on phytotoxicity and defense mechanism of silver nanoparticles (AgNPs) on plants(Springer Science and Business Media B.V., 2023-03-16T00:00:00) Kumar, Sumit; Masurkar, Prahlad; Sravani, Bana; Bag, Dipanjali; Sharma, Kamal Ravi; Singh, Prashant; Korra, Tulasi; Meena, Mukesh; Swapnil, Prashant; Rajput, Vishnu D.; Minkina, TatianaSilver nanoparticles (AgNPs) are noteworthy used nanomaterials in a wide array of fields, particularly in the agricultural sector. Plants play a multifarious role in the ecosystem and provide a source of food for mankind. The responsibility of the scientific community is to recognize the deleterious impact of AgNPs (1�100�nm in size) on critical crop growth and development of plants, which is required for the assessment of environmental threats to plant, human, and animal health. The continued use of AgNPs in agriculture areas may have negative effects on plant biochemical and physiological responses. The current context focused mainly on AgNPs uptake, transport, and accumulation on crop plants and summarizes different levels of phytotoxicity of AgNPs on plant functions and focused on mechanisms of phytotoxicity employed by AgNPs. Moreover, some tolerance mechanisms and various survival strategies developed by plants under AgNPs toxicity are discussed. This background provides comprehensive information necessary to facilitate profound understanding of the toxic impacts of AgNPs on crop plants. � 2023, The Author(s), under exclusive licence to Springer Nature B.V.Item Cross-priming accentuates key biochemical and molecular indicators of defense and improves cold tolerance in chickpea (Cicer arietinum L.)(Polish Academy of Sciences, Institute of Slavic Studies, 2019) Saini R.; Adhikary A.; Nayyar H.; Kumar S.Cold environment favors long vegetative phase but also impose substantial loss by damaging reproductive functioning in chickpea. Field temperature below 10��C is even more detrimental for reproductive development, enhances floral and pod abortion. In this study, contrasting chickpea varieties PDG3 and GPF2 were exposed to drought, recovered, and subsequently exposed to lethal cold stress ~ 4�5��C with an aim to induce defense response against cold shock. Physiological, biochemical, and molecular signatures related to damage and defense, i.e., membrane damage, antioxidative enzymes, fatty acid desaturase (CaFAD2.1), and small HSPs (CaHSP18.5 and CaHSP22.7), were analyzed. Drought pretreatment/preconditioning maintained the membrane stability in the cold by managing malondialdehyde (MDA) content and lipoxygenase (LOX) activity. Improved mitochondrial functioning (TTC reduction), increased activity of catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) proved better cellular functioning during cold exposure. The expression and activity of superoxide dismutase (CaSOD) were down-regulated in both varieties, but CaCAT, CaAPX, CaGR, and CaFAD2.1 expressions were up-regulated in GPF2. Small heat shock protein CaHSP22.7 was also up-regulated in drought preconditioned PDG3 and GPF2 and after cold shock. Drought pretreatment/preconditioning significantly improved membrane damage during cold exposure, induced antioxidative system, and up-regulated FAD2. This study also pointed the possible role of CaHSP22.7 in cold tolerance and CaHSP18.5 in drought stress. The sensitive variety (GPF2) was positively responsive to preconditioning as this variety showed improvement in defense-related parameters; however, genotypic variations were observed in PDG3. � 2019, Franciszek G�rski Institute of Plant Physiology, Polish Academy of Sciences, Krak�w.Item Assessment of antioxidant potential of phytochemicals in human glioblastoma (U-87 MG) cells(Central University of Punjab, 2014) Kaur, Manpreet; Mantha, Anil K.Imbalance between production of reactive oxygen/nitrogen species (ROS/RNS) leads to oxidative stress and has been well documented for mitochondrial dysfunction, a prime cause towards pathogenesis of neurological diseases and cancer. Glioblastoma Multiforme (GBM) is a highly aggressive, invasive and primary brain tumor which shows resistance to chemotherapy and radiotherapy. Superoxide dismutase (SOD) is an antioxidant enzyme that scavenges the production of superoxide radicals and dismutases into H?O? which is further converted into H?O and O? by catalase (CAT) enzyme. Apurinic/Apyrimidinic endonuclease (APE1) is a central enzyme of base excision repair (BER) pathway with two important functions; DNA repair and redox regulation of transcription factors (TFs) responsible for cell survival. In this study, it was seen that oxidative stress induced by endogenously found oxidants H?O? and glucose oxidase (GO) enhanced the activities of both CuZn-SOD and MnSOD in U-87 MG cells. In addition, CuZn-SOD levels were found to be increased in H?O?-induced oxidative stress and MnSOD levels were found to be increased in both H?O? and GO- induced oxidative stress. Further, pretreatment with phytochemicals Curcumin and Quercetin modulated the activities and expression of both forms of SOD studied. The BER-pathway enzyme, APE1 level was found to be decreased in mitochondria of oxidative stress induced U-87 MG cells by H?O? and GO, and in contrast APE1 level was found to be increased in cytosol, which indicates that oxidative stress affects the expression level and sub-cellular localization of APE1. Taken together, these results indicate that in GBM it is more likely that activated SOD a key player of antioxidant system and APE1 a key player in BER-pathway might be facilitating cancer cells to survive in oxidative stress environment.Item Assessment of Extract of Syzygium cumini Against Doxorubicin Induced Cardiotoxicity(Central University of Punjab, 2018) Chayan, Mukherjee; Monisha DhimanFor the past four decades, doxorubicin (DOX) has been used to treat cancer, mainly solid tumours and haematological malignancies. However, clinical community is greatly concerned regarding the administration of this as DOX treatment is commonly associated with dose-dependent cardiotoxicity. Attempts at alleviating drug generated cardiac damage using an extract from different parts of plants with radical scavenging property are a promising area of research. Hydroalcoholic extract derived from fruit pulp of Syzygiumcumini which has a significant antiradical scavenging effect. This study aims to assess the effect of parallel administration of SC fruit pulp extract (SC) on mitigating or preventing DOX induced cardiotoxicity in vitro using H9c2 cardiomyoblast cell lines. Addition of SC fruit pulp extract and DOX were performed for both treatment and control sets on H9c2 cells. SC fruit pulp extract showed strong ABTS cation radical scavenging activity in a dose dependent manner. MTT assay was used to study the cytotoxic effect of SC fruit pulp extract and DOX. ROS levels were estimated using NBT assay and DHE assay. The results showed that DOX has significant cytotoxic effect in a dose dependent manner while SC fruit pulp extract did not display any significant cytotoxicity on H9c2 cells. The DOX induced ROS production was found to be significantly reduced in SC fruit pulp extract treated cells. Results of the current study also suggest that the treatment of SC fruit pulp extract along with DOX, displayed cardioprotective potential in H9c2 cells by: 1) reducing lipid peroxidation; 2) decreasing extracellular nitric oxide (NO); 3) decreasing the expression of the protein p47phox and iNOS/NOS-2. These results clearly suggest that treatment of SC fruit pulp extract along with DOX reduces the DOX induced toxicity and hence can be a promising therapeutic intervention in managing DOX mediated cardiotoxicity.Item Oxidative stress responses to sub-lethal dose of Cry toxin in the larvae of castor semilooper, Achaea janata(Central University of Punjab, 2018) Singh, Kanika; Chaitanya,R.K.Development of synthetic insecticides to reduce the level of infestation led to deleterious effects on environment and human health. This lead to the development of ecofriendly pest management alternatives including Bacillus thuringensis (Bt). Bt produce Crystal (Cry), Cytotoxic (Cyt) and Vegetative (Vip) proteins with insecticidal activity against different orders of lepidoptera. Of late, pest resistance against Bt is reported in countries.The reduced toxicity of Bt formulation from degradation by UV light, wash-off by rain, drying, temperature, and soil acidity as well as its chemistry. Further, insects sense pesticides through odorant receptors and move away quickly, there is always a possibility of a population of larvae to get exposed to sub-lethal doses of toxin which might exhibit variable effects and escape mortality and eventually generate resistance. Sub-lethal dose lead to the generation of oxidative stress in the insect and eventually scavenged by anti-oxidant enzymes. These stress responses would enhance our understanding of adaptations for survival and resistance development. The current study is an attempt to monitor the antioxidative responses at the transcriptional level upon sub-lethal exposure of Cry toxin in the larvae of an polyphagous pest castor semilooper, Achaea janata. prevalent in the Indian subcontinent.Item Pyramiding of tea Dihydroflavonol reductase and Anthocyanidin reductase increases flavan-3-ols and improves protective ability under stress conditions in tobacco(Springer Verlag, 2017) Kumar, Vinay; Yadav, Sudesh KumarTea (Camellia sinensis) is one of the richest sources of flavan-3-ols, an important class of flavonoids. The expression level of gene-encoded key regulatory enzymes of flavan-3-ol/anthocyanin biosynthetic pathway, dihydroflavonol 4-reductase (DFR) and anthocyanidin reductase (ANR), has been highly correlated with the flavan-3-ol contents and antioxidant activity in tea plant. In the present study, pyramiding of CsDFR and CsANR in tobacco was achieved. However, single transgenic tobacco overexpressing either CsDFR or CsANR was documented earlier. In continuation, pyramided transgenic lines were evaluated for the possible, either same or beyond, effect on flavan-3-ol accumulation and protective ability against biotic and abiotic stresses. The pyramided transgenic lines showed early flowering and improved seed yield. The transcript levels of flavan-3-ol/anthocyanin biosynthetic pathway and related genes in pyramided transgenic lines were upregulated as compared to control tobacco plants. The accumulations of flavan-3-ols were also found to be higher in pyramided transgenic lines than control tobacco plants. In contrast, anthocyanin content was observed to be decreased in pyramided transgenic lines, while DPPH activity was higher in pyramided transgenic lines. In pyramided transgenic lines, strong protective ability against feeding by Spodoptera litura was documented. The seeds of pyramided transgenic lines were also found to have better germination rate under aluminum toxicity as compared to control tobacco plants. Interestingly, the synergistic effect of these two selected genes are not beyond from transgenic lines expressing either CsDFR and CsANR alone as published earlier in terms of flavan-3-ols accumulation. However, the unique flower color and better seed germination rate are some interestingly comparable differences that were reported in pyramided lines in relation to individual transgenic plants. In conclusion, the present results reveal an interesting dynamic between CsDFR and CsANR in modulating flavan-3-ol/anthocyanin levels and functional analysis of stacked CsDFR and CsANR transgenic tobacco lines. ? 2017, Springer-Verlag GmbH Germany.Item Composition, bioactive compounds and antioxidant activity of common Indian fruits and vegetables(Springer India, 2016) Singh,Jatinder Pal; Kaur, Amritpal; Shevkani, Khetan; Singh, NarpinderThe present work was undertaken to evaluate the chemical composition (proximate, minerals and dietary fibre), colour parameters, antioxidant activity and polyphenol profiles of different fruits (pomegranate, kinnow, mango, banana, jambolan, grapes and sapodilla) and vegetables (beetroot, brinjal, orange carrot, bitter gourd, mentha and spinach). The amount of insoluble dietary fibre was higher than soluble dietary fibre for all fruits and vegetables. Vegetables showed superior mineral composition (higher amounts of K, Ca and Fe) as compared to fruits. Total phenolic content (TPC) and antioxidant activity (ABTS and DPPH) ranged from 354.9 to 1639.7?mg?GAE/100?g, 2.6 to 5.5 and 3.0 to 6.3?mM?TE/g, respectively for different fruits, while it ranged from 179.3 to 1028.6?mg?GAE/100?g, 2.1 to 4.7 and 2.0 to 5.0?mM?TE/g, respectively for different vegetables. Gallic acid, protocatechuic acid, catechin, caffeic acid, ferulic acid, sinapic acid, quercetin, resveratrol and kaempferol were detected and quantified in different fruits and vegetables. The results highlighted that fruit peels could be used as valuable sources of minerals and polyphenols having high antioxidant activity. ? 2016, Association of Food Scientists & Technologists (India).Item Bioactive constituents in pulses and their health benefits(Springer India, 2017) Singh,Balwinder; Singh, Jatinder Pal; Shevkani, Khetan; Singh, Narpinder; Kaur, AmritpalPulses are good sources of bioactive compounds such as polyphenols, phytosterols and non-digestible carbohydrates that play important physiological as well as metabolic roles. These compounds vary in concentration amongst different pulse species and varieties. Pulse seed coats are rich in water-insoluble fibres and polyphenols (having high antioxidant activities), while cotyledons contain higher soluble fibres, oligosaccharides, slowly digestible and resistant starch content. Ferulic acid is the most abundant phenolic acid present in pulses, while flavonol glycosides, anthocyanins and tannins are responsible for the seed coat colour. Sitosterol (most abundant), stigmasterol, and campesterol are the major phytosterols present in pulses. Pulse fibres, resistant starch and oligosaccharides function as probiotics and possess several other health benefits such as anti-inflammatory, anti-tumour, and reduce glucose as well as lipid levels. Beans and peas contain higher amounts of oligosaccharides than other pulses. Processing methods affect resistant starch, polyphenol composition and generally increase antioxidant activities of different pulses. In this review, the current information on pulse polyphenols, phytosterols, resistant starch, dietary fibre, oligosaccharides, antioxidant and associated health benefits are discussed. ? 2016, Association of Food Scientists & Technologists (India).