School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
2 results
Search Results
Item A review on microbial products and their perspective application as antimicrobial agents(MDPI, 2021-12-13T00:00:00) Rani, Alka; Saini, Khem Chand; Bast, Felix; Varjani, Sunita; Mehariya, Sanjeet; Bhatia, Shashi Kant; Sharma, Neeta; Funk, ChristianeMicroorganisms including actinomycetes, archaea, bacteria, fungi, yeast, and microalgae are an auspicious source of vital bioactive compounds. In this review, the existing research regard-ing antimicrobial molecules from microorganisms is summarized. The potential antimicrobial compounds from actinomycetes, particularly Streptomyces spp.; archaea; fungi including endophytic, filamentous, and marine-derived fungi, mushroom; and microalgae are briefly described. Further-more, this review briefly summarizes bacteriocins, halocins, sulfolobicin, etc., that target multiple-drug resistant pathogens and considers next-generation antibiotics. This review highlights the pos-sibility of using microorganisms as an antimicrobial resource for biotechnological, nutraceutical, and pharmaceutical applications. However, more investigations are required to isolate, separate, purify, and characterize these bioactive compounds and transfer these primary drugs into clinically approved antibiotics. � 2021 by the authors. Li-censee MDPI, Basel, Switzerland.Item A review on microbial products and their perspective application as antimicrobial agents(MDPI, 2021-12-13T00:00:00) Rani, Alka; Saini, Khem Chand; Bast, Felix; Varjani, Sunita; Mehariya, Sanjeet; Bhatia, Shashi Kant; Sharma, Neeta; Funk, ChristianeMicroorganisms including actinomycetes, archaea, bacteria, fungi, yeast, and microalgae are an auspicious source of vital bioactive compounds. In this review, the existing research regard-ing antimicrobial molecules from microorganisms is summarized. The potential antimicrobial compounds from actinomycetes, particularly Streptomyces spp.; archaea; fungi including endophytic, filamentous, and marine-derived fungi, mushroom; and microalgae are briefly described. Further-more, this review briefly summarizes bacteriocins, halocins, sulfolobicin, etc., that target multiple-drug resistant pathogens and considers next-generation antibiotics. This review highlights the pos-sibility of using microorganisms as an antimicrobial resource for biotechnological, nutraceutical, and pharmaceutical applications. However, more investigations are required to isolate, separate, purify, and characterize these bioactive compounds and transfer these primary drugs into clinically approved antibiotics. � 2021 by the authors. Li-censee MDPI, Basel, Switzerland.