School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
3 results
Search Results
Item Insight into use of biopolymer in hybrid electrode materials for supercapacitor applications�A critical review(American Institute of Physics Inc., 2023-05-12T00:00:00) Tanwar, Shweta; Sharma, A.L.The shortage of natural resources due to the progression of the human population and environmental pollution has become crucial concern topics to resolve. One of the best ways to resolve this is to develop renewable energy-based storage systems. Supercapacitors are emerging as promising storage systems via providing rapid charging/discharging and high power delivery, but there is a need to explore low-cost, environment-friendly, non-toxic, abundant, and biodegradable electrode materials for supercapacitors. In this regard, biopolymers are observed to be popular for storage applications as they are of high porosity, cost-effective, easily available, low-weight, and environment friendly and have biodegradability properties. The biopolymer-based electrode has a desirable morphology and high surface area and exhibits admirable electrochemical properties. The focus of this report is to highlight (i) the inclusive details of supercapacitors and their types along with strategies to improve their electrochemical performance, (ii) biopolymers and their types used for supercapacitor applications, (iii) various synthesis routes that could be adopted for designing electrode materials based on biopolymers for supercapacitors, and (iv) challenges and future scope of biopolymers as the electrode material in supercapacitor applications. The detailed study here in this report is found to be a topic of interest for the scientific community to fabricate and prepare low-cost, eco-friendly, high electrochemical performance exhibiting electrode materials for supercapacitor applications. � 2023 Author(s).Item Genomic DNA-mediated formation of a porous Cu2(OH)PO4/Co3(PO4)2�8H2O rolling pin shape bifunctional electrocatalyst for water splitting reactions(Royal Society of Chemistry, 2022-01-28T00:00:00) Singh, Harjinder; Ahmed, Imtiaz; Biswas, Rathindranath; Mete, Shouvik; Halder, Krishna Kamal; Banerjee, Biplab; Haldar, Krishna KantaAmong the accessible techniques, the production of hydrogen by electrocatalytic water oxidation is the most established process, which comprises oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Here, we synthesized a genomic DNA-guided porous Cu2(OH)PO4/Co3(PO4)2�8H2O rolling pin shape composite structure in one pot. The nucleation and development of the porous rolling pin shape Cu2(OH)PO4/Co3(PO4)2�8H2O composite was controlled and stabilized by the DNA biomolecules. This porous rolling pin shape composite was explored towards electrocatalytic water oxidation for both OER and HER as a bi-functional catalyst. The as-prepared catalyst exhibited a very high OER and HER activity compared to its various counterparts in the absence of an external binder (such as Nafion). The synergistic effects between Cu and Co metals together with the porous structure of the composite greatly helped in enhancing the catalytic activity. These outcomes undoubtedly demonstrated the beneficial utilization of the genomic DNA-stabilised porous electrocatalyst for OER and HER, which has never been observed. This journal is � The Royal Society of Chemistry.Item Photophysical properties of push-pull 8-aryl-deoxyguanosine probes within duplex and G-quadruplex structures(Royal Society of Chemistry, 2016) Blanchard, D.J.M.; Fadock, K.L.; Sproviero, M.; Deore, P.S.; Cservenyi, T.Z.; Manderville, R.A.; Sharma, P.; Wetmore, S.D.In this study, we outline the structural and photophysical properties of donor-acceptor (D-A) 8-aryl-2?-deoxyguanosine (8aryldG) probes within duplex and G-quadruplex (GQ) structures produced by the thrombin binding aptamer (TBA, 5?-GGTTG5G6TG8TGGTTGG). The probes vary in 8-aryl ring size, degree of twist angle between the aryl ring and nucleobase component, degree of acceptor character, and nature of visibly emissive charge transfer (CT) states. Probes with the aryl ring directly attached to the nucleobase favor the syn-conformation and strongly destabilize the duplex structure, as measured by UV thermal melting experiments. However, these probes can stabilize the antiparallel GQ produced by TBA when inserted into the G-tetrad at the syn-G5 position, and strongly decrease GQ stability when inserted at the anti-G6 position. Nucleoside probes with the aryl ring separated from the nucleobase by a vinyl linker favor the anti-conformation. Furthermore, the nature of the aryl group dictates an ability of these probes to be accomodated within the GQ at the anti-G6 position. 8AryldG probes that favor planar CT states (CTP) exhibit bright emission in both duplex and GQ structures, but lack fluorescence sensitivity to changes in the microenvironment. In contrast, probes that afford twisted CT states (CTT) exhibit weak fluorescence in duplex and GQ structures in water, but display fluorescence signalling capability for monitoring GQ formation in a crowded environment. ? The Royal Society of Chemistry 2016.