School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 6 of 6
  • Item
    Medicinal chemistry perspective of pyrido[2,3-d]pyrimidines as anticancer agents
    (Royal Society of Chemistry, 2023-03-03T00:00:00) Kumar, Adarsh; Bhagat, Kuber Kumar; Singh, Ankit Kumar; Singh, Harshwardhan; Angre, Tanuja; Verma, Amita; Khalilullah, Habibullah; Jaremko, Mariusz; Emwas, Abdul-Hamid; Kumar, Pradeep
    Cancer is a major cause of deaths across the globe due to chemoresistance and lack of selective chemotherapy. Pyrido[2,3-d]pyrimidine is an emerging scaffold in medicinal chemistry having a broad spectrum of activities, including antitumor, antibacterial, CNS depressive, anticonvulsant, and antipyretic activities. In this study, we have covered different cancer targets, including tyrosine kinase, extracellular regulated protein kinases - ABL kinase, phosphatidylinositol-3 kinase, mammalian target of rapamycin, p38 mitogen-activated protein kinases, BCR-ABL, dihydrofolate reductase, cyclin-dependent kinase, phosphodiesterase, KRAS and fibroblast growth factor receptors, their signaling pathways, mechanism of action and structure-activity relationship of pyrido[2,3-d]pyrimidine derivatives as inhibitors of the above-mentioned targets. This review will represent the complete medicinal and pharmacological profile of pyrido[2,3-d]pyrimidines as anticancer agents, and will help scientists to design new selective, effective and safe anticancer agents. � 2023 The Royal Society of Chemistry.
  • Item
    Naphthylisoindolinone alkaloids: the first ring-contracted naphthylisoquinolines, from the tropical liana Ancistrocladus abbreviatus, with cytotoxic activity
    (Royal Society of Chemistry, 2022-10-12T00:00:00) Fayez, Shaimaa; Bruhn, Torsten; Feineis, Doris; Assi, Laurent Ak�; Kushwaha, Prem Prakash; Kumar, Shashank; Bringmann, Gerhard
    The West African liana Ancistrocladus abbreviatus is a rich source of structurally most diverse naphthylisoquinoline alkaloids. From its roots, a series of four novel representatives, named ancistrobrevolines A-D (14-17) have now been isolated, displaying an unprecedented heterocyclic ring system, where the usual isoquinoline entity is replaced by a ring-contracted isoindolinone part. Their constitutions were elucidated by 1D and 2D NMR and HR-ESI-MS. The absolute configurations at the chiral axis and at the stereogenic center were assigned by using experimental and computational electronic circular dichroism (ECD) investigations and a ruthenium-mediated oxidative degradation, respectively. For the biosynthetic origin of the isoindolinones from �normal� naphthyltetrahydroisoquinolines, a hypothetic pathway is presented. It involves oxidative decarboxylation steps leading to a ring contraction by a benzilic acid rearrangement. Ancistrobrevolines A (14) and B (15) were found to display moderate cytotoxic effects (up to 72%) against MCF-7 breast and A549 lung cancer cells and to reduce the formation of spheroids (mammospheres) in the breast cancer cell line. � 2022 The Royal Society of Chemistry.
  • Thumbnail Image
    Item
    Identifying the preferred interaction mode of naringin with gold nanoparticles through experimental, DFT and TDDFT techniques: Insights into their sensing and biological applications
    (Royal Society of Chemistry, 2016) Singh, Baljinder; Rani, Monika; Singh, Janpreet; Moudgil, Lovika; Sharma, Prateek; Kumar, Sanjeev; Saini, G.S.S.; Tripathi, S.K.; Singh, Gurinder; Kaura, Aman
    In this work, the binding behaviour of naringin-a flavonoid with AuNPs is explained by combining experimental and theoretical approaches. We have systematically analysed the effect of temperature and concentration of naringin and gold (Au) in the formation of naringin stabilized Au nanoparticles (N-AuNPs). The interaction of naringin with gold nanoparticles (AuNPs) is investigated by various techniques such as UV-visible spectroscopy, TEM, FT-IR, XRD and gel electrophoresis. These studies indicate that naringin acts as a reducing and stabilizing agent. Further, we have modelled the two side chains of naringin with the functional groups [C10H7O2] and [C6H5O]-, and identified the lowest energy configurations of these groups with AuNPs with the help of density functional theory (DFT). The [C10H7O2]-Au13 has higher binding energy than [C6H5O]--Au13 and it is attributed to delocalized molecular orbitals in [C10H7O2], hence higher charge transfer to the Au13 cluster. On the basis of the resulting structures, we examine the optical properties using time-dependent density functional theory (TDDFT). We observe significant changes in the optical spectra of the representative structures of side chains with the AuNPs. The peak in the spectra of the Vis region of [C10H7O2]-Au13 undergoes a shift towards lower wavelength in comparison to [C6H5O]--Au13. Natural transition orbitals (NTOs) of hole and particle states of the [C10H7O2]-Au13 conjugate system are localized on [C10H7O2] and Au13, respectively, whereas for the [C6H5O]--Au13 both hole and particle states are localized on the Au13 cluster. These N-AuNPs show their applicability as a sensor for detecting aluminium ions (Al3+) in aqueous solution. These NPs are also found to be biocompatible with normal red blood cells and MDAMB-231 breast carcinoma cell lines, as evaluated from hemolysis and cytotoxicity assays. Thus, naringin offers non-toxic and bio friendly N-AuNPs, which are considered to be the best vehicle for drug release and other possible biomedical and sensing applications. ? 2016 The Royal Society of Chemistry.
  • Item
    Cellulose: A multifaceted biopolymer
    (Nova Science Publishers, Inc., 2016) Majeed, A.; Najar, R.A.; Ul Rehman, W.; Choudhary, S.; Thakur, S.; Singh, A.; Sharma, G.; Bhardwaj, P.
    Cellulose is a common natural polymer with a wide range of industrial, medical, bio fuel, agricultural, textile and paper applications. It exhibits various levels of structural organizations, from individual glucose chains through microfibrils, macrofibrils to cellulose fibers. The synthesizing machinery of cellulose consists of a six subunit plasmamembrane protein complex, cellulose synthase, organized into a rosette structure. Plant cellulose synthases possess additional plant specific motifs that are absent in bacteria. Among the different solvent systems developed for cellulose dissolution, ionic liquids stand at the forefront. Microorganism mediated energy release from cellulose facilitates its use in fuel cells as a source of energy. The nanocomposites of cellulose have revolutionized the medical field and are being chiefly used in tissue engineering, ligament engineering and wound healing. The chemical structure of cellulose make it suitable to form hydrogels which are used in tissue engineering, cartilage modelling, bone implantation, cell culture scaffolds, enhanced drug delivery, heavy metal absorbance, and in retaining soil water and efficient fertilizer release for agricultural efficiency. Besides, cellulose based ethanol production help to reduce the pressure on conventional sources of energy. This chapter focuses on cellulose structure, its synthesizing machinery, trafficking, genes and proteins involved, solubility and solvent systems, its derivatives, composites, hydrogels, fuel cells, ethanol production and degradation. ? 2016 Nova Science Publishers, Inc.
  • Thumbnail Image
    Item
    Amino acid functionalized zinc oxide nanostructures for cytotoxicity effect and hemolytic behavior: Theoretical and experimental studies
    (Elsevier Ltd, 2017) Singh, Satvinder; Singh, Baljinder; Sharma, Prateek; Mittal, Anu; Kumar, Sanjeev; Saini, G.S.S.; Tripathi, S.K.; Singh, Gurinder; Kaura, Aman
    Blending of theoretical and experimental approach, provide an important strategy in designing the nanostructure at a microscopic level and helps in predicting the response of synthesized material towards inhibition of the growth of breast cancer cell. In this work, ab initio calculations using super cell approach are performed for three different amino acids (AAs)-Histidine (His), Arginine (Arg) and Aspartic acid (Asp) coated Zinc oxide (ZnO) nanostructures to explain the growth mechanism of nanoparticles (NPs) of different shapes. Based on the first principles calculations, we reveal that ZnO-AA (Arg and Asp) NPs results in rod like and ZnO-His NPs lead to tablet like configuration. Similar morphologies are fabricated using AAs through synthetic route. The effect of concentration ratio of reactants and pH has been studied. As synthesized samples, are characterized by using Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) and UV?Vis spectroscopy techniques. Based on the results, a plausible mechanism of formation of nanostructures has been proposed. The nanostructures with rod like morphology are found to be biocompatible with normal red blood cells and show cytotoxic effect as evaluated from hemolysis and cytotoxicity assays on breast (MCF-7, T47D, MDA-MB-231) & prostate cancer (PC-3) cell lines. ? 2017 Elsevier Ltd
  • Thumbnail Image
    Item
    Nischarin inhibition alters energy metabolism by activating AMP-activated protein kinase
    (American Society for Biochemistry and Molecular Biology Inc., 2017) Dong, Shengli; Baranwal, Somesh; Garcia, Anapatricia; Serrano-Gomez, Silvia; Eastlack, Steven; Iwakuma, Tomoo; Mercante, Donald; Mauvais-Jarvis, Franck; Alahari, Suresh K.; Dong, S.; Baranwal, S.; Garcia, A.; Serrano-Gomez, S.J.; Eastlack, S.; Iwakuma, T.; Mercante, D.; Mauvais-Jarvis, F.; Alahari, S.K.
    Nischarin (Nisch) is a key protein functioning as a molecular scaffold and thereby hosting interactions with several protein partners. To explore the physiological importance of Nisch, here we generated Nisch loss-of-function mutant mice and analyzed their metabolic phenotype. Nisch-mutant embryos exhibited delayed development, characterized by small size and attenuated weight gain. We uncovered the reason for this phenotype by showing that Nisch binds to and inhibits the activity of AMP-activated protein kinase (AMPK), which regulates energy homeostasis by suppressing anabolic and activating catabolic processes. The Nisch mutations enhanced AMPK activation and inhibited mechanistic target of rapamycin signaling in mouse embryonic fibroblasts as well as in muscle and liver tissues of mutant mice. Nisch-mutant mice also exhibited increased rates of glucose oxidation with increased energy expenditure, despite reduced overall food intake. Moreover, the Nisch-mutant mice had reduced expression of liver markers of gluconeogenesis associated with increased glucose tolerance. As a result, these mice displayed decreased growth and body weight. Taken together, our results indicate that Nisch is an important AMPK inhibitor and a critical regulator of energy homeostasis, including lipid and glucose metabolism. ? 2017 by The American Society for Biochemistry and Molecular Biology, Inc.