School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Structure-based Virtual Screening and Molecular Dynamic Simulation Approach for the Identification of Terpenoids as Potential DPP-4 Inhibitors
    (Bentham Science Publishers, 2023-05-16T00:00:00) Pulikkottil, Ajay Aravind; Kumar, Amit; Jangid, Kailash; Kumar, Vinod; Jaitak, Vikas
    Background: Diabetes mellitus is a metabolic disorder where insulin secretion is compromised, leading to hyperglycemia. DPP-4 is a viable and safer target for type 2 diabetes mellitus. Computational tools have proven to be an asset in the process of drug discovery. Objective: In the present study, tools like structure-based virtual screening, MM/GBSA, and pharmacokinetic parameters were used to identify natural terpenoids as potential DPP-4 inhibitors for treating diabetes mellitus. Methods: Structure-based virtual screening, a cumulative mode of elimination technique, was adopted, identifying the top five potent hit compounds depending on the docking score and nonbonding interactions. Results: According to the docking data, the most important contributors to complex stability are hydrogen bonding, hydrophobic interactions, and Pi-Pi stacking interactions. The dock scores ranged from-6.492 to-5.484 kcal/mol, indicating robust ligand-protein interactions. The pharmacokinetic characteristics of top-scoring hits (CNP0309455, CNP0196061, CNP0122006, CNP0 221869, CNP0297378) were also computed in this study, confirming their safe administration in the human body. Also, based on the synthetic accessibility score, all top-scored hits are easily synthesizable. Compound CNP0309455 was quite stable during molecular dynamic simulation studies. Conclusion: Virtual database screening yielded new leads for developing DPP-4 inhibitors. As a result, the findings of this study can be used to design and develop natural terpenoids as DPP-4 inhibitors for the medication of diabetes mellitus. � 2024 Bentham Science Publishers.
  • Item
    Research progress on 2,4-thiazolidinedione and 2-thioxo-4-thiazolidinone analogues as aldose reductase inhibitors
    (Elsevier B.V., 2022-07-18T00:00:00) Kharyal, Ankush; Ranjan, Sanjeev; Jaswal, Shalini; Parveen, Darakhshan; Gupta, Ghanshyam Das; Thareja, Suresh; Verma, Sant Kumar
    Diabetes-associated complications are a major global health concern. In diabetics, the increased accumulation of sorbitol, produced via over activated polyol pathway, from glucose by the action of aldose reductase (AR, ALR2, or AKR1B1), has been associated with life-threatening co-morbidities. Aldose reductase is crucial in detoxifying certain hazardous aldehydes. However, aldose reductase overexpression in the hyperglycemic state results in microvascular and macrovascular diabetic complications through the consequences of the activated polyol pathway. Accordingly, aldose reductase inhibition has been identified as a viable strategy for dealing with diabetes-associated complications, and it has been put under investigation by various researchers around the world. 2,4-Thiazolidinedione (TZD) and its bio-isosteric analog 2-thioxo-4-thiazolidinone (rhodanine) have been explored as potential inhibitors of aldose reductase to find new molecules. The current review provides a comprehensive insight into the development and medicinal chemistry of TZD and rhodanine derivatives as aldose reductase inhibitors during the last twenty years (2002�2021). Here, the synthetic strategies, SAR, and binding mode of various compounds, Quantitative structure activity relationship (QSARs) are discussed with an emphasis on structural changes to the both moieties for optimizing/designing potent target-specific inhibitors, which is expected to be beneficial for the further design and discovery of newer agents for the treatment of diabetic complications. In addition, the patents on TZDs and rhodanine derivatives as aldose reductase inhibitors are summarized to illustrate the current status. � 2022 Elsevier B.V.
  • Item
    A Review on Molecular Mechanism of Flavonoids as Antidiabetic Agents
    (Bentham Science, 2019) Jasmin; Jaitak, Vikas
    The development of drugs possessing anti-diabetic activities is a long pursued goal in drug discovery. It has been shown that deregulated insulin mediated signaling, oxidative stress, obesity, and β-cell dysfunction are the main factors responsible for the disease. With the advent of new and more powerful screening assays and prediction tools, the idea of a drug that can effectively treat diabetes by targeting different pathways has re-bloomed. Current anti-diabetic therapy is based on synthetic drugs that very often have side effects. For this reason, there is an instantaneous need to develop or search new alternatives. Recently, more attention is being paid to the study of natural products. Their huge advantage is that they can be ingested in everyday diet. Here, we discuss various causes, putative targets, and treatment strategies, mechanistic aspects as well as structural features with a particular focus on naturally occurring flavonoids as promising starting points for anti-diabetic led development.
  • Thumbnail Image
    Item
    Effect of metform on insuln mediated proliferation of lung cancer cell lines
    (Central University of Punjab, 2012) Seema; Bast, Felix
    Background: The incidence of cancer in diabetes mellitus (DM) patients is a matter of concern. Lung cancer is the most commonly diagnosed cancer and leading cause of death in males. Smoking is the main risk factor contributing to lung cancer progression. The occurrence of cancer is more with the type 2 DM. Besides, hyperglycemia and endogenous insulinaemia exist together for a long duration as a result of insulin resistance. As a consequence of this, the mitogenic activity of insulin is amplified. Moreover, other growth factors, and hormones are activated under the influence of insulin that further enhances this effect. It is also related to obesity, central fat accumulation, physical inactivity and smoking. The nicotine of smoke induces oxidative stress and endothelial malfunction creating metabolic abnormalities in lung cancer. In this perspective, role of insulin sensitizing drug, metformin in inhibiting the growth proliferation of lung cancer cells is hereby explored. Objective: The present study was aimed to evaluate the growth proliferation effect of insulin on non small cell lung carcinoma cell lines. It also proposed to evaluate role of metformin in preventing insulin mediated proliferation in p53 and liver kinase B1 (LKB1) mutant and wild type cell lines. Materials and methods: Two non small cell lung carcinoma cell lines, A549 and H1299 (p53 and LKB1 wild type and mutant) were used to analyze the mitogenic role of insulin by incubating for 24 hours with human recombinant insulin at a range of concentrations from 1nM to 10'M. This was followed by the metformin (concentrations from 1'M to 50mM) treatment for 24 hours along with insulin (500'M for A549 and 1mM for H1299). The proliferations were assessed by MTT dye reduction test and the percentage of the survival of the treated cells was compared with the control. One way ANOVA was used for the data analysis and the proliferation between cell lines were evaluated by student's t-test and two way analysis of variance (Two way ANOV). Results: Both the cell lines exhibited a significant proliferation (p<0.001) with the concentrations of insulin. Insulin stimulated the proliferation approximately by two fold and 1.78 times for A549 cells and H1299 cell line respectively compared to control cells. The growth of two lung carcinoma cell lines were significantly (p<0.001) inhibited by metformin treatment for 24 hours. The maximum reduction in growth was 73% and 67% for A549 and H1299 respectively for a concentration of 50mM of metformin compared to the control. The results followed a dose dependant response pattern for insulin as well as metformin treatment. Concentration at which 50% inhibition of growth observed (IC50) was comparable for both the cell lines. Conclusions: Insulin in high circulating concentrations can augment the growth proliferation of lung cancer cells. Metformin can inhibit this insulin mediated proliferation of lung cancer cells in a multifaceted way. The mechanism of action is independent of p53 and liver kinase B1.