School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Bioactive peptides for boosting stem cell culture platform: Methods and applications
    (Elsevier Masson s.r.l., 2023-02-09T00:00:00) Abdal Dayem, Ahmed; Lee, Soo Bin; Lim, Kyung Min; Kim, Aram; Shin, Hyun Jin; Vellingiri, Balachandar; Kim, Young Bong; Cho, Ssang-Goo
    Peptides, short protein fragments, can emulate the functions of their full-length native counterparts. Peptides are considered potent recombinant protein alternatives due to their specificity, high stability, low production cost, and ability to be easily tailored and immobilized. Stem cell proliferation and differentiation processes are orchestrated by an intricate interaction between numerous growth factors and proteins and their target receptors and ligands. Various growth factors, functional proteins, and cellular matrix-derived peptides efficiently enhance stem cell adhesion, proliferation, and directed differentiation. For that, peptides can be immobilized on a culture plate or conjugated to scaffolds, such as hydrogels or synthetic matrices. In this review, we assess the applications of a variety of peptides in stem cell adhesion, culture, organoid assembly, proliferation, and differentiation, describing the shortcomings of recombinant proteins and their full-length counterparts. Furthermore, we discuss the challenges of peptide applications in stem cell culture and materials design, as well as provide a brief outlook on future directions to advance peptide applications in boosting stem cell quality and scalability for clinical applications in tissue regeneration. � 2023 The Authors
  • Thumbnail Image
    Item
    Stage-specific functions of Semaphorin7A during adult hippocampal neurogenesis rely on distinct receptors
    (Nature Publishing Group, 2017) Jongbloets, Bart C.; Lemstra, Suzanne; Schellino, Roberta; Broekhoven, Mark H.; Parkash, Jyoti; Hellemons, Anita J.C.G.M.; Mao, Tianyi; Giocobini, Paolo; Praag, Henriette Van; Marchis, Silvia De; Ramakers, Geert M.J.; Pasterkamp, R. Jeroen; Jongbloets, B.C.; Lemstra, S.; Schellino, R.; Broekhoven, M.H.; Parkash, J.; Hellemons, A.J.C.G.M.; Mao, T.; Giacobini, P.; Van Praag, H.; De Marchis, S.; Ramakers, G.M.J.; Pasterkamp, R.J.
    The guidance protein Semaphorin7A (Sema7A) is required for the proper development of the immune and nervous systems. Despite strong expression in the mature brain, the role of Sema7A in the adult remains poorly defined. Here we show that Sema7A utilizes different cell surface receptors to control the proliferation and differentiation of neural progenitors in the adult hippocampal dentate gyrus (DG), one of the select regions of the mature brain where neurogenesis occurs. PlexinC1 is selectively expressed in early neural progenitors in the adult mouse DG and mediates the inhibitory effects of Sema7A on progenitor proliferation. Subsequently, during differentiation of adult-born DG granule cells, Sema7A promotes dendrite growth, complexity and spine development through ?1-subunit-containing integrin receptors. Our data identify Sema7A as a key regulator of adult hippocampal neurogenesis, providing an example of how differential receptor usage spatiotemporally controls and diversifies the effects of guidance cues in the adult brain.