School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Genome-wide identification and gene expression analysis of GHMP kinase gene family in banana cv. Rasthali
    (Springer Science and Business Media B.V., 2023-09-20T00:00:00) Chaturvedi, Siddhant; Khan, Shahirina; Thakur, Neha; Jangra, Alka; Tiwari, Siddharth
    Background: The GHMP kinase gene family encompasses ATP-dependent kinases, significantly involved in the biosynthesis of isoprenes, amino acids, and metabolism of carbohydrates. Banana is a staple tropical crop that is globally consumed but known for high sensitivity to salt, cold, and drought stresses. The GHMP kinases are known to play a significant role during abiotic stresses in plants. The present study emphasizes the role of GHMP kinases in various abiotic stress conditions in banana. Methods and results: We identified 12 GHMP kinase (MaGHMP kinase) genes in the banana genome database and witnessed the presence of the conserved Pro-X-X-X-Gly-Leu-X-Ser-Ser-Ala domain in their protein sequences. All genes were found to be involved in ATP-binding and carried kinase activity confronting their biological roles in the isoprene (27%) and amino acid (20%) biosyntheses. The expression analysis of genes during cold, drought, and salt stress conditions in tissue culture grown banana cultivar Rasthali plants showed a significant involvement of MaGHMP kinase genes in these stress conditions. The highest expression of MaGHMP kinase3 (8.5 fold) was noted during cold stress, while MaGHMP kinase1 (25 fold and 40.01 fold) showed maximum expression during drought and salt stress conditions in leaf tissue of Rasthali. Conclusion: Our findings suggested that MaGHMP kinase1 (MaHSK) and MaGHMP kinase3 (MaGlcAK) could be considered promising candidates for thwarting the abiotic stresses in banana. � 2023, The Author(s), under exclusive licence to Springer Nature B.V.
  • Item
    Genome-wide identification and gene expression analysis of GHMP kinase gene family in banana cv. Rasthali
    (Springer Science and Business Media B.V., 2023-09-20T00:00:00) Chaturvedi, Siddhant; Khan, Shahirina; Thakur, Neha; Jangra, Alka; Tiwari, Siddharth
    Background: The GHMP kinase gene family encompasses ATP-dependent kinases, significantly involved in the biosynthesis of isoprenes, amino acids, and metabolism of carbohydrates. Banana is a staple tropical crop that is globally consumed but known for high sensitivity to salt, cold, and drought stresses. The GHMP kinases are known to play a significant role during abiotic stresses in plants. The present study emphasizes the role of GHMP kinases in various abiotic stress conditions in banana. Methods and results: We identified 12 GHMP kinase (MaGHMP kinase) genes in the banana genome database and witnessed the presence of the conserved Pro-X-X-X-Gly-Leu-X-Ser-Ser-Ala domain in their protein sequences. All genes were found to be involved in ATP-binding and carried kinase activity confronting their biological roles in the isoprene (27%) and amino acid (20%) biosyntheses. The expression analysis of genes during cold, drought, and salt stress conditions in tissue culture grown banana cultivar Rasthali plants showed a significant involvement of MaGHMP kinase genes in these stress conditions. The highest expression of MaGHMP kinase3 (8.5 fold) was noted during cold stress, while MaGHMP kinase1 (25 fold and 40.01 fold) showed maximum expression during drought and salt stress conditions in leaf tissue of Rasthali. Conclusion: Our findings suggested that MaGHMP kinase1 (MaHSK) and MaGHMP kinase3 (MaGlcAK) could be considered promising candidates for thwarting the abiotic stresses in banana. � 2023, The Author(s), under exclusive licence to Springer Nature B.V.
  • Item
    SUMO and SUMOylation in Plants: Ignored Arsenal to Combat Abiotic Stress
    (Springer, 2023-10-11T00:00:00) Yadav, Radheshyam; Chaudhary, Shivam; Ramakrishna, Wusirika
    Plants being fixed in one place are exposed to various episodes of different abiotic stresses such as drought, salinity, cold, and heat. SUMOylation is one of the ignored arsenals that help plants to develop tolerance to these external abiotic stresses. SUMOylation of target protein generally leads to changes in its transportation, transcriptional regulation, apoptosis, stability, and response to different stresses. de-SUMOylation of substrate proteins by SUMO proteases also play a crucial role in maintaining the cellular pool of SUMO. This review highlights different components of SUMOylation and their role in different abiotic stresses and their ability to contribute to plant abiotic stress tolerance. Furthermore, the current perspective of SUMOylation in phytochrome signaling, nutrient and ROS homeostasis is discussed. The full potential of SUMOylation in combination with other molecular approaches to combat abiotic stresses in plants is not yet realized. As research in this area continues to advance, it is crucial to explore the interplay between SUMOylation and other signaling networks, as well as the crosstalk with different stress-responsive pathways. Additionally, understanding the specificity and dynamics of SUMOylation in response to specific stressors can provide valuable insights for designing targeted interventions to enhance plant stress tolerance. In conclusion, the review highlights the emerging significance of SUMOylation in plant stress responses and its potential in contributing to plant resilience against abiotic stresses. � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.