School Of Basic And Applied Sciences
Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17
Browse
4 results
Search Results
Item One-step hydrothermal synthesis of MoS2 nano-flowers CoS2 square composites electrode materials for supercapacitor application(Elsevier Ltd, 2022-07-27T00:00:00) Iqbal, Muzahir; Saykar, Nilesh G.; Kumar Mahanta, Alok; Mahapatra, S.K.Developing efficient materials for generating and storing renewable energy is now a pressing test for future energy demand. The advent of (2D) two-dimensional materials has attracted much research interest as electrode materials for supercapacitors due to their intriguing mechanical and electrochemical properties. This report used a facile one-step hydrothermal process to synthesize MoS2@CoS2 Composite as electrode materials for supercapacitors with good energy storage performance and explore energy generation and storage applications. The structure and morphology were investigated by X-ray diffraction pattern, field emission scanning electron microscope consisting of square-shaped CoS2 and flower-like MoS2, and characterization; meanwhile, their electrochemical properties were evaluated by CV, GCD, and EIS measurements. The electrochemical performance of symmetric MoS2@CoS2 binary Composite was examined in 1 M H2SO4 in a two-electrode assembly. The as-prepared MoS2@CoS2 electrode exhibited a specific capacitance of 199F/g at a current density of 2A/g, while its counterpart MoS2 electrode exhibited only 127F/g at 2 A/g current density. The MoS2@CoS2 composite attains specific energy and power densities of 27.74 WhKg?1 and 494.46 Wkg?1, respectively, due to the unique morphology of the MoS2-flowery shape and CoS2 square. CoS2 squares effectively prevent the agglomeration and restacking of MoS2 sheets, facilitating smother ion dynamics. Technological demonstration of MoS2@CoS2 cell is presented by illuminating commercially available light-emitting diode for more than 3 min. � 2022Item NiS/MoS2 Anchored Multiwall Carbon Nanotube Electrocatalyst for Hydrogen Generation and Energy Storage Applications(John Wiley and Sons Inc, 2023-04-05T00:00:00) Ahmed, Imtiaz; Biswas, Rathindranath; Iqbal, Muzahir; Roy, Ayan; Haldar, Krishna KantaAlthough sulfide-based materials are known to be efficient catalysts for oxygen evolution reactions (OER), hydrogen evolution reactions (HER), and supercapacitor applications, improving the catalytic activity of sulfide materials for both electrochemical water splitting and supercapacitors remains a challenging problem. Here, an easy and one-step integrated methodology is implemented to develop NiS/MoS2 anchored multiwall carbon nanotubes (MWCNT/NiS/MoS2) catalysts that can effectively and robustly catalyze both the HER and OER. The MWCNT/NiS/MoS2 hybrid composite offers the lowest overpotential of 201 mV and 193 mV to achieve a current density of 10 mA/cm2 and ?10 mA/cm2 with a small Tafel slope of 58 mV/dec 41 mV/dec for OER and HER, respectively, in alkaline and acidic conditions. The obtained multi-walled carbon nanotubes anchored with intertwined NiS/MoS2 have a significant number of active sites and defects throughout the structure. The hybrid composite electrode delivered a specific capacitance of >371.45 F/g at 2 A/g in a two-electrode system, along with high energy density of 51.63 Wh/kg (ED) along with the power density (PD) of 953.63 W/kg, and good capacitance retention ?82% after 2000 cycles. Therefore, a tandem electron transfer mechanism between NiS and MoS2 (MoS2?NiS) is believed to have an electrical synergistic effect that promotes both HER and OER activity. This research opens a new path for the construction of multi-component, cheap electrocatalysts that are highly effective for overall water splitting and energy storage applications. � 2023 Wiley-VCH GmbH.Item H 2 O 2 sensing through electrochemically deposited thionine coated ITO thin film(Cellular and Molecular Biology Association, 2017) Singh P.; Srivastava S.; Singh S.K.Progression and initiation of different diseases including pulmonary diseases, alzheimer's and tumors are linked with the oxidative stress, an important cause of cell damage. Different antioxidant enzymes are involved in detoxifying reactive oxygen species including hydrogen peroxide (H 2 O 2 ) that is generated in response to various stimuli and has important role in cell activation & bio-signaling processes. Herein, we developed hydrogen peroxide electrochemical sensor based on horseradish peroxidase (HRP) entrapped polymerized thionine (PTH) film. Electrochemical deposition of thionine (dye) on indium tin oxide (ITO) surface was carried out through chornoamperometry followed by cyclic voltammetry. Deposited thionine thin film obtained was checked for its stability at different scan rates. The PTH-modified electrodes showed linear dependence of peak current with scan rate within the range of 20 to 100 mV s -1 . Thionine used as electron transfer mediator between heme site of HRP and electrode. Cyclic voltammetry showed increase in the reduction peak current due to electrocatalytic reduction of H 2 O 2 . The sensor detection limit range from 10 -1 -10 2 ?M and limit of detection was 0.1?M. The proposed sensor has good storage response, cost effective, high sensitivity and wide linear range that could be used for the fabrication of other enzyme based biosensors.Item H2 O2 sensing through electrochemically deposited thionine coated ITO thin film(CMB Association Publications, 2017) Singh, P.; Srivastava, S.; Singh, S. K.Progression and initiation of different diseases including pulmonary diseases, alzheimer’s and tumors are linked with the oxidative stress, an important cause of cell damage. Different antioxidant enzymes are involved in detoxifying reactive oxygen species including hydrogen peroxide (H2O2) that is generated in response to various stimuli and has important role in cell activation & bio-signaling processes. Herein, we developed hydrogen peroxide electrochemical sensor based on horseradish peroxidase (HRP) entrapped polymerized thionine (PTH) film. Electrochemical deposition of thionine (dye) on indium tin oxide (ITO) surface was carried out through chornoamperometry followed by cyclic voltammetry. Deposited thionine thin film obtained was checked for its stability at different scan rates. The PTH-modified electrodes showed linear dependence of peak current with scan rate within the range of 20 to 100 mV s−1. Thionine used as electron transfer mediator between heme site of HRP and electrode. Cyclic voltammetry showed increase in the reduction peak current due to electrocatalytic reduction of H2O2. The sensor detection limit range from 10-1 _ 102 μM and limit of detection was 0.1μM. The proposed sensor has good storage response, cost effective, high sensitivity and wide linear range that could be used for the fabrication of other enzyme based biosensors.