School Of Basic And Applied Sciences

Permanent URI for this communityhttps://kr.cup.edu.in/handle/32116/17

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Nanotechnology as a powerful tool in plant sciences: Recent developments, challenges and perspectives
    (Elsevier B.V., 2023-08-24T00:00:00) Kumari, Avnesh; Rana, Varnika; Yadav, Sudesh Kumar; Kumar, Vinay
    In today's global climate emergency, agricultural practices are becoming increasingly unsustainable. There are a number of alarming issues that require immediate action, including soil erosion, excessive use of natural resources, biodiversity loss, and an explosion of population. Although agriculture is heavily modernized, with traditional approaches, it is not possible to meet these challenges due to different landscapes, high nutrition demand, and a lack of technology. Aside from adversely affecting agriculture, chemical use has also resulted in serious health issues and undesirable effects on the ecosystem. As a result, nanotechnology will play a significant role in delivering a well-organized, sustainable agricultural industry by reducing chemicals and addressing existing problems. A quick disease diagnosis, improved plant nutrient absorption, and increased plant capability to absorb nutrients can be achieved by nanotechnology in the food and agriculture industries. Agricultural plants can be protected from insects and pests by nanotechnology acting as sensors to monitor soil and water quality. Despite their potential, researchers have been unable to understand how these compounds operate, since NPs either enhance growth or cause cytotoxicity depending on how much concentration is applied. In this article, we present the most promising nanoparticles used in abiotic stress management and gene editing of plants, as well as novel nanobionic approaches for improving plant functions and organelles. � 2023 The Authors
  • Item
    Nanotechnology as a powerful tool in plant sciences: Recent developments, challenges and perspectives
    (Elsevier B.V., 2023-08-24T00:00:00) Kumari, Avnesh; Rana, Varnika; Yadav, Sudesh Kumar; Kumar, Vinay
    In today's global climate emergency, agricultural practices are becoming increasingly unsustainable. There are a number of alarming issues that require immediate action, including soil erosion, excessive use of natural resources, biodiversity loss, and an explosion of population. Although agriculture is heavily modernized, with traditional approaches, it is not possible to meet these challenges due to different landscapes, high nutrition demand, and a lack of technology. Aside from adversely affecting agriculture, chemical use has also resulted in serious health issues and undesirable effects on the ecosystem. As a result, nanotechnology will play a significant role in delivering a well-organized, sustainable agricultural industry by reducing chemicals and addressing existing problems. A quick disease diagnosis, improved plant nutrient absorption, and increased plant capability to absorb nutrients can be achieved by nanotechnology in the food and agriculture industries. Agricultural plants can be protected from insects and pests by nanotechnology acting as sensors to monitor soil and water quality. Despite their potential, researchers have been unable to understand how these compounds operate, since NPs either enhance growth or cause cytotoxicity depending on how much concentration is applied. In this article, we present the most promising nanoparticles used in abiotic stress management and gene editing of plants, as well as novel nanobionic approaches for improving plant functions and organelles. � 2023 The Authors
  • Thumbnail Image
    Item
    Microbial xylanases and their industrial application in pulp and paper biobleaching: a review
    (Springer Verlag, 2017) Walia, Abhishek; Guleria, Shiwani; Mehta, Preeti; Chauhan, Anjali; Prakash, Jyoti; Walia, A.; Guleria, S.; Mehta, P.; Chauhan, A.; Parkash, J.
    Xylanases are hydrolytic enzymes which cleave the ?-1, 4 backbone of the complex plant cell wall polysaccharide xylan. Xylan is the major hemicellulosic constituent found in soft and hard food. It is the next most abundant renewable polysaccharide after cellulose. Xylanases and associated debranching enzymes produced by a variety of microorganisms including bacteria, actinomycetes, yeast and fungi bring hydrolysis of hemicelluloses. Despite thorough knowledge of microbial xylanolytic systems, further studies are required to achieve a complete understanding of the mechanism of xylan degradation by xylanases produced by microorganisms and their promising use in pulp biobleaching. Cellulase-free xylanases are important in pulp biobleaching as alternatives to the use of toxic chlorinated compounds because of the environmental hazards and diseases caused by the release of the adsorbable organic halogens. In this review, we have focused on the studies of structural composition of xylan in plants, their classification, sources of xylanases, extremophilic xylanases, modes of fermentation for the production of xylanases, factors affecting xylanase production, statistical approaches such as Plackett Burman, Response Surface Methodology to enhance xylanase production, purification, characterization, molecular cloning and expression. Besides this, review has focused on the microbial enzyme complex involved in the complete breakdown of xylan and the studies on xylanase regulation and their potential industrial applications with special reference to pulp biobleaching, which is directly related to increasing pulp brightness and reduction in environmental pollution. ? 2017, The Author(s).